Monotone Valuations on the Space of Convex Functions
L. Cavallina ; A. Colesanti
Analysis and Geometry in Metric Spaces, Tome 3 (2015), / Harvested from The Polish Digital Mathematics Library

We consider the space Cn of convex functions u defined in Rn with values in R ∪ {∞}, which are lower semi-continuous and such that lim|x| } ∞ u(x) = ∞. We study the valuations defined on Cn which are invariant under the composition with rigid motions, monotone and verify a certain type of continuity. We prove integral representations formulas for such valuations which are, in addition, simple or homogeneous.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:271207
@article{bwmeta1.element.doi-10_1515_agms-2015-0012,
     author = {L. Cavallina and A. Colesanti},
     title = {Monotone Valuations on the Space of Convex Functions},
     journal = {Analysis and Geometry in Metric Spaces},
     volume = {3},
     year = {2015},
     zbl = {1321.26027},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_agms-2015-0012}
}
L. Cavallina; A. Colesanti. Monotone Valuations on the Space of Convex Functions. Analysis and Geometry in Metric Spaces, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_agms-2015-0012/

[1] W. K. Allard, The Riemann and Lebesgue integrals, lecture notes. Available at: http://www.math.duke.edu~wka/math204/

[2] L. Ambrosio, N. Fusco, D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford University Press, New York, 2000. | Zbl 0957.49001

[3] Y. Baryshnikov, R. Ghrist, M. Wright, Hadwiger’s Theorem for definable functions, Adv. Math. 245 (2013), 573-586. [WoS] | Zbl 1286.52006

[4] L. Cavallina, Non-trivial translation invariant valuations on L1, in preparation.

[5] A. Colesanti, I. Fragalà, The first variation of the total mass of log-concave functions and related inequalities, Adv. Math. 244 (2013), pp. 708-749. | Zbl 1305.26033

[6] L. C. Evans, R. F. Gariepy, Measure theory and fine properties of fucntions, CRC Press, Boca Raton, 1992. | Zbl 0804.28001

[7] H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957.

[8] D. Klain, A short proof of Hadwiger’s characterization theorem, Mathematika 42 (1995), 329-339. | Zbl 0835.52010

[9] D. Klain, G. Rota, Introduction to geometric probability, Cambridge University Press, New York, 1997. | Zbl 0896.60004

[10] H. Kone, Valuations on Orlicz spaces and Lφ-star sets, Adv. in Appl. Math. 52 (2014), 82-98. | Zbl 1301.46009

[11] M. Ludwig, Fisher information and matrix-valued valuations, Adv. Math. 226 (2011), 2700-2711. [WoS] | Zbl 1274.62064

[12] M. Ludwig, Valuations on function spaces, Adv. Geom. 11 (2011), 745 - 756. [WoS] | Zbl 1235.52023

[13] M. Ludwig, Valuations on Sobolev spaces, Amer. J. Math. 134 (2012), 824 - 842. | Zbl 1255.52013

[14] M. Ludwig, Covariance matrices and valuations, Adv. in Appl. Math. 51 (2013), 359-366. | Zbl 1303.62016

[15] M. Ober, Lp-Minkowski valuations on Lq-spaces, J. Math. Anal. Appl. 414 (2014), 68-87.

[16] T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970. | Zbl 0193.18401

[17] R. Schneider, Convex bodies: the Brunn-Minkowski theory, second expanded edition, Cambridge University Press, Cambridge, 2014.

[18] A. Tsang, Valuations on Lp-spaces, Int. Math. Res. Not. IMRN 2010, 20, 3993-4023. | Zbl 1211.52013

[19] A. Tsang, Minkowski valuations on Lp-spaces, Trans. Amer. Math. Soc. 364 (2012), 12, 6159-6186. | Zbl 1279.52008

[20] T. Wang, Affine Sobolev inequalities, PhD Thesis, Technische Universität, Vienna, 2013.

[21] T. Wang, Semi-valuations on BV(Rn), Indiana Univ. Math. J. 63 (2014), 1447–1465. | Zbl 1320.46035

[22] M. Wright, Hadwiger integration on definable functions, PhD Thesis, 2011, University of Pennsylvania.