Sobolev-Kantorovich Inequalities
Michel Ledoux
Analysis and Geometry in Metric Spaces, Tome 3 (2015), / Harvested from The Polish Digital Mathematics Library

In a recent work, E. Cinti and F. Otto established some new interpolation inequalities in the study of pattern formation, bounding the Lr(μ)-norm of a probability density with respect to the reference measure μ by its Sobolev norm and the Kantorovich-Wasserstein distance to μ. This article emphasizes this family of interpolation inequalities, called Sobolev-Kantorovich inequalities, which may be established in the rather large setting of non-negatively curved (weighted) Riemannian manifolds by means of heat flows and Harnack inequalities.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:271060
@article{bwmeta1.element.doi-10_1515_agms-2015-0011,
     author = {Michel Ledoux},
     title = {Sobolev-Kantorovich Inequalities},
     journal = {Analysis and Geometry in Metric Spaces},
     volume = {3},
     year = {2015},
     zbl = {1326.35171},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_agms-2015-0011}
}
Michel Ledoux. Sobolev-Kantorovich Inequalities. Analysis and Geometry in Metric Spaces, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_agms-2015-0011/

[1] D. Bakry, I. Gentil, M. Ledoux. Analysis and geometry of Markov diffusion operators. Grundlehren der mathematischen Wissenschaften 348. Springer (2014). | Zbl 06175511

[2] D. Bakry, I. Gentil, M. Ledoux. On Harnack inequalities and optimal transportation Ann. Scuola Norm. Sup. Pisa, to appear (2015). | Zbl 1331.35151

[3] D. Bakry, Z. Qian. Some new results on eigenvectors via dimension, diameter, and Ricci curvature. Adv. Math. 155, 98–153 (2000). | Zbl 0980.58020

[4] V. I. Bogachev, F.-Y. Wang, A. V. Shaposhnikov. Estimates of the Kantorovich norm on manifolds (2015). | Zbl 1331.58014

[5] R. Choksi, S. Conti, R. Kohn, F. Otto. Ground state energy scaling laws during the onset and destruction of the intermediate state in a type I superconductor. Comm. Pure Appl. Math. 6, 595–626 (2008). [WoS] | Zbl 1142.82031

[6] E. Cinti, F. Otto. Interpolation inequalities in pattern formation (2014).

[7] E. B. Davies. Heat kernels and spectral theory. Cambridge Tracts in Mathematics 92. Cambridge (1989). | Zbl 0699.35006

[8] M. Ledoux. On improved Sobolev embedding theorems. Math. Res. Letters 10, 659–669 (2003). [Crossref] | Zbl 1044.22006

[9] P. Li, S.-T. Yau. On the parabolic kernel of the Schrödinger operator. Acta Math. 156, 153–201 (1986). | Zbl 0611.58045

[10] E. Milman. On the role of convexity in isoperimetry, spectral gap and concentration. Invent. Math. 177, 1–43 (2009). [WoS] | Zbl 1181.52008

[11] E. Milman. Isoperimetric and concentration inequalities: equivalence under curvature lower bound. Duke Math. J. 154, 207–239 (2010). [WoS] | Zbl 1205.53038

[12] F. Otto, C. Villani. Generalization of an inequality by Talagrand, and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173, 361–400 (2000). | Zbl 0985.58019

[13] C. Villani. Optimal transport. Old and new. Grundlehren der mathematischen Wissenschaften 338. Springer (2009).

[14] F.-Y. Wang. Logarithmic Sobolev inequalities on noncompact Riemannian manifolds. Probab. Theory Related Fields 109, 417–424 (1997). | Zbl 0887.35012

[15] F.-Y. Wang. Functional inequalities, Markov properties and spectral theory. Science Press (2005).