Stability and Continuity of Functions of Least Gradient
H. Hakkarainen ; R. Korte ; P. Lahti ; N. Shanmugalingam
Analysis and Geometry in Metric Spaces, Tome 3 (2015), / Harvested from The Polish Digital Mathematics Library

In this note we prove that on metric measure spaces, functions of least gradient, as well as local minimizers of the area functional (after modification on a set of measure zero) are continuous everywhere outside their jump sets. As a tool, we develop some stability properties of sequences of least gradient functions. We also apply these tools to prove a maximum principle for functions of least gradient that arise as solutions to a Dirichlet problem.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:271003
@article{bwmeta1.element.doi-10_1515_agms-2015-0009,
     author = {H. Hakkarainen and R. Korte and P. Lahti and N. Shanmugalingam},
     title = {Stability and Continuity of Functions of Least Gradient},
     journal = {Analysis and Geometry in Metric Spaces},
     volume = {3},
     year = {2015},
     zbl = {1318.26028},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_agms-2015-0009}
}
H. Hakkarainen; R. Korte; P. Lahti; N. Shanmugalingam. Stability and Continuity of Functions of Least Gradient. Analysis and Geometry in Metric Spaces, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_agms-2015-0009/

[1] F. J. Almgren, Jr., Almgren’s big regularity paper, Q-valued functions minimizing Dirichlet’s integral and the regularity of area-minimizing rectifiable currents up to codimension 2. With a preface by Jean E. Taylor and Vladimir Scheffer. World Scientific Monograph Series in Mathematics, 1. World Scientific Publishing Co., Inc., River Edge, NJ, 2000. xvi+955 pp. | Zbl 0985.49001

[2] L. Ambrosio, Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces, Adv. Math. 159 (2001), no. 1, 51–67. | Zbl 1002.28004

[3] L. Ambrosio, Fine properties of sets of finite perimeter in doubling metric measure spaces, Calculus of variations, nonsmooth analysis and related topics. Set-Valued Anal. 10 (2002), no. 2-3, 111–128. [Crossref] | Zbl 1037.28002

[4] L. Ambrosio and S. Di Marino, Equivalent definitions of BV space and of total variation on metric measure spaces, J. Funct. Anal. 266 (2014), no. 7, 4150–4188. [WoS] | Zbl 1302.26012

[5] L. Ambrosio, N. Fusco, and D. Pallara, Functions of bounded variation and free discontinuity problems,OxfordMathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000. | Zbl 0957.49001

[6] L. Ambrosio, M. Miranda, Jr., and D. Pallara, Special functions of bounded variation in doubling metric measure spaces, Calculus of variations: topics from the mathematical heritage of E. De Giorgi, 1–45, Quad. Mat., 14, Dept. Math., Seconda Univ. Napoli, Caserta, 2004. | Zbl 1089.49039

[7] L. Ambrosio, A. Pinamonti, and G. Speight, Tensorization of Cheeger energies, the space H1,1 and the area formula for graphs, preprint 2014. [WoS] | Zbl 1345.46025

[8] A. Björn and J. Björn, Nonlinear potential theory on metric spaces, EMS Tracts in Mathematics, 17. European Mathematical Society (EMS), Zürich, 2011. xii+403 pp. [WoS] | Zbl 1231.31001

[9] E. Bombieri, E. De Giorgi, and E. Giusti, Minimal cones and the Bernstein problem, Invent. Math. 7 (1969), 243–268. | Zbl 0183.25901

[10] C. Camfield, Comparison of BV norms in weighted Euclidean spaces and metric measure spaces, Thesis (Ph.D.)–University of Cincinnati (2008), 141 pp. | Zbl 1234.26026

[11] J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999), no. 3, 428–517. [Crossref] | Zbl 0942.58018

[12] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions Studies in AdvancedMathematics series, CRC Press, Boca Raton, 1992.

[13] E. Giusti,Minimal surfaces and functions of bounded variation, Monographs inMathematics, 80. Birkhäuser Verlag, Basel, 1984. xii+240 pp.

[14] P. Hajłasz, Sobolev spaces on metric-measure spaces, Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002), 173–218, Contemp. Math., 338, Amer. Math. Soc., Providence, RI, 2003. | Zbl 1048.46033

[15] H. Hakkarainen, J. Kinnunen, and P. Lahti, Regularity of minimizers of the area functional in metric spaces, Adv. Calc. Var. 8 (2015), no. 1, 55–68. [WoS] | Zbl 1305.49069

[16] H. Hakkarainen, J. Kinnunen, P. Lahti, and P. Lehtelä, Relaxation and integral representation for functionals of linear growth on metric measure spaces, submitted.

[17] J. Heinonen, Lectures on analysis on metric spaces, Universitext. Springer-Verlag, New York, 2001. x+140 pp. | Zbl 0985.46008

[18] J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear potential theory of degenerate elliptic equations, Dover Publications, Inc., Mineola, NY, 2006. xii+404 pp. | Zbl 1115.31001

[19] J. Kinnunen and N. Shanmugalingam, Regularity of quasi-minimizers on metric spaces, Manuscripta Math. 105 (2001), 401–423. [Crossref] | Zbl 1006.49027

[20] J. Kinnunen, R. Korte, N. Shanmugalingam, and H. Tuominen, The DeGiorgi measure and an obstacle problem related to minimal surfaces in metric spaces, J. Math. Pures Appl. 93 (2010), 599–622. [Crossref][WoS] | Zbl 1211.49055

[21] J. Kinnunen, R. Korte, A. Lorent, and N. Shanmugalingam, Regularity of sets with quasiminimal boundary surfaces in metric spaces, J. Geom. Anal. 23 (2013), 1607–1640. [WoS][Crossref] | Zbl 1311.49116

[22] J. Kinnunen, R. Korte, N. Shanmugalingam, and H. Tuominen, Lebesgue points and capacities via the boxing inequality in metric spaces, Indiana Univ. Math. J. 57 (2008), no. 1, 401–430. [WoS] | Zbl 1146.46018

[23] J. Kinnunen, R. Korte, N. Shanmugalingam, and H. Tuominen, Pointwise properties of functions of bounded variation on metric spaces, Rev. Mat. Complut. 27 (2014), no. 1, 41–67. [Crossref][WoS] | Zbl 1295.26012

[24] F. Maggi, Sets of finite perimeter and geometric variational problems, An introduction to geometric measure theory. Cambridge Studies in Advanced Mathematics, 135. Cambridge University Press, Cambridge, 2012. xx+454 pp. [WoS] | Zbl 1255.49074

[25] U. Massari and M. Miranda, Sr., Minimal surfaces of codimension one, North-Holland Mathematics Studies, 91. Notas de Matemática [Mathematical Notes], 95, North-Holland Publishing Co., Amsterdam, 1984. xiii+243 pp.

[26] M. Miranda, Sr., Comportamento delle successioni convergenti di frontiere minimali, Rend. Sem. Mat. Univ. Padova, 38 (1967), 238–257. | Zbl 0154.37102

[27] M. Miranda, Jr., Functions of bounded variation on “good” metric spaces, J.Math. Pures Appl. (9) 82 (2003), no. 8, 975–1004. [Crossref] | Zbl 1109.46030

[28] H. Parks, Explicit determination of area minimizing hypersurfaces, Duke Math. J. 44 (1977), no. 3, 519–534. [Crossref] | Zbl 0385.49026

[29] H. Parks, Explicit determination of area minimizing hypersurfaces. II, Mem. Amer. Math. Soc. 60 (1986), no. 342, iv+90 pp. | Zbl 0644.53007

[30] E. R. Reifenberg, Solution of the Plateau Problem for m-dimensional surfaces of varying topological type, Acta Math. 104 (1960), 1–92. [Crossref] | Zbl 0099.08503

[31] N. Shanmugalingam, Newtonian spaces: An extension of Sobolev spaces to metric measure spaces, Rev.Mat. Iberoamericana 16 (2000), no. 2, 243–279. | Zbl 0974.46038

[32] J. Simons, Minimal cones, Plateau’s problem, and the Bernstein conjecture, Proc. Nat. Acad. Sci. U.S.A. 58 (1967), 410–411. [Crossref] | Zbl 0168.09903

[33] J. Simons, Minimal varieties in riemannian manifolds, Ann. of Math. (2) 88 (1968), 62–105. | Zbl 0181.49702

[34] E. Soultanis, Homotopy classes of Newtonian spaces, preprint http://lanl.arxiv.org/pdf/1309.6472.pdf.

[35] P. Sternberg, G. Williams, and W. P. Ziemer, Existence, uniqueness, and regularity for functions of least gradient, J. Reine Angew. Math. 430 (1992), 35–60. | Zbl 0756.49021

[36] W. P. Ziemer, Weakly differentiable functions. Sobolev spaces and functions of bounded variation Graduate Texts in Mathematics, 120. Springer-Verlag, New York, 1989. | Zbl 0692.46022

[37] W. P. Ziemer, Functions of least gradient and BV functions, Nonlinear analysis, function spaces and applications, Vol. 6 (Prague, 1998), 270–312, Acad. Sci. Czech Repub., Prague, 1999.