Resolvent Flows for Convex Functionals and p-Harmonic Maps
Kazuhiro Kuwae
Analysis and Geometry in Metric Spaces, Tome 3 (2015), / Harvested from The Polish Digital Mathematics Library

We prove the unique existence of the (non-linear) resolvent associated to a coercive proper lower semicontinuous function satisfying a weak notion of p-uniform λ-convexity on a complete metric space, and establish the existence of the minimizer of such functions as the large time limit of the resolvents, which generalizing pioneering work by Jost for convex functionals on complete CAT(0)-spaces. The results can be applied to Lp-Wasserstein space over complete p-uniformly convex spaces. As an application, we solve an initial boundary value problem for p-harmonic maps into CAT(0)-spaces in terms of Cheeger type p-Sobolev spaces.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:270015
@article{bwmeta1.element.doi-10_1515_agms-2015-0004,
     author = {Kazuhiro Kuwae},
     title = {Resolvent Flows for Convex Functionals and p-Harmonic Maps},
     journal = {Analysis and Geometry in Metric Spaces},
     volume = {3},
     year = {2015},
     zbl = {1314.53071},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_agms-2015-0004}
}
Kazuhiro Kuwae. Resolvent Flows for Convex Functionals and p-Harmonic Maps. Analysis and Geometry in Metric Spaces, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_agms-2015-0004/

[1] L. Ambrosio, N. Gigli and G. Savaré, Gradient flows inmetric spaces and in the space of probabilitymeasures, Second edition. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2008. | Zbl 1145.35001

[2] M. Baˇcák, Convergence of nonlinear semigroups under nonpositive curvature, preprint (2012), to appear in Trans. Amer. Math. Soc.

[3] M. Baˇcák, Convex analysis and optimization in Hadamard spaces, De Gruyter Series in Nonlinear Analysis and Applications 22, 2014.

[4] K. Ball, E. A. Carlen and E. H. Lieb, Sharp uniform convexity and smoothness inequalities for trace norms, Invent. Math. 115 (1994), no. 3, 463–482. | Zbl 0803.47037

[5] M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften | Zbl 0988.53001

[Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999.

[6] J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999), no. 3, 428–517. [Crossref] | Zbl 0942.58018

[7] J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), no. 3, 396–414. | Zbl 0015.35604

[8] L. E. Dor, Potentials and isometric embeddings in L1, Israel J. Math. 24 (1976), no. 3-4, 260–268. | Zbl 0345.46018

[9] H. Izeki and S. Nayatani, Combinatorial harmonic maps and discrete-group actions on Hadamard spaces, Geom. Dedicata 114 (2005), 147–188. | Zbl 1108.58014

[10] J. Jost, Convex functionals and generalized harmonic maps into spaces of non positive curvature, Comment.Math. Helvetici, 70 (1995), no. 4, 659–673. | Zbl 0852.58022

[11] J. Jost, Nonpositive curvature: geometric and analytic aspects, Lectures inMathematics ETH Zürich. Birkhäuser Verlag, Basel, 1997.

[12] J. Jost, Nonlinear Dirichlet forms, in “New directions in Dirichlet forms,”1–47, AMS and Internat. Press, 1998. | Zbl 0914.31006

[13] N. J. Korevaar and R. M. Schoen, Sobolev spaces and harmonic maps for metric space targets, Comm. Anal. Geom. 1 (1993), no. 3-4, 561–659. | Zbl 0862.58004

[14] K. Kuwae, Jensen’s inequality on convex spaces, Calc. Var. Partial Differential Equations, 49 (2014), no. 3–4, 1359–1378. | Zbl 1291.53047

[15] K. Kuwae, Variational convergence for convex functionals, 2014, in preparation. | Zbl 1291.53047

[16] K. Kuwae and T. Shioya, Sobolev and Dirichlet spaces over maps between metric spaces, J. Reine Angew. Math. 555 (2003), 39–75. | Zbl 1053.46020

[17] K. Kuwae and T. Shioya, Variational convergence over metric spaces, Trans. Amer. Math. Soc. 360 (2008), no. 1, 35–75. | Zbl 1127.53034

[18] T.-C. Lim, Fixed point theorems for uniformly Lipschitzian mappings in Lp-spaces, Nonlinear Anal. 7 (1983), no. 5, 555–563. | Zbl 0533.47049

[19] T.-C. Lim, On some Lp inequality in best approximation theory, J. Math. Anal. Appl. 154 (1991), no. 2, 523–528. | Zbl 0744.41015

[20] T.-C. Lim, H. K. Xu and Z. B. Xu, Some Lp inequalities and their applications to fixed point theory and approximation theory, Progress in approximation theory, 609–624, Academic Press, Boston, MA, 1991.

[21] J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. ofMath. (2) 169 (2009), 903–991. | Zbl 1178.53038

[22] U. F. Mayer, Gradient flows on nonpositively curved metric spaces and harmonic maps, Comm. Anal. Geom. 6 (1998), no. 2, 199–253. [Crossref] | Zbl 0914.58008

[23] A. Naor and L. Silberman, Poincaré inequalities, embeddings, and wild groups, Compositio Mathematica 147 (2011), no. 5, 1546–1572. [WoS] | Zbl 1267.20057

[24] S.-I. Ohta, Cheeger type Sobolev spaces for metric space targets, Potential Anal. 20 (2004), no. 2, 149–175. | Zbl 1047.46026

[25] S.-I. Ohta, Convexities of metric spaces, Geom. Dedicata 125, (2007), no. 1, 225–250. | Zbl 1140.52001

[26] B. Prus and R. Smarzewski, Strongly unique best approximations and centers in uniformly convex spaces, J. Math. Anal. Appl. 121 (1987), no. 1, 10–21. | Zbl 0617.41046

[27] L. Silberman, a private communication at Nagoya, (2014).

[28] R. Smarzewski, Strongly unique minimization of functionals in Banach spaces with applications to theory of approximation and fixed points, J. Math. Anal. Appl. 115 (1986), no. 1, 155–172. | Zbl 0593.49004

[29] R. Smarzewski, Strongly unique best approximation in Banach spaces, J. Approx. Theory 46 (1986), no. 3, 184–192. | Zbl 0615.41027

[30] K.-T. Sturm, On the geometry of metric measure spaces. I, Acta Math. 196 (2006), no. 1, 65–131.

[31] M. Tanaka, The energy of equivariant maps and a fixed-point property for Busemann nonpositive curvature spaces, Trans. Amer. Math. Soc. 363 (2011), no. 4, 1743–1763. [WoS] | Zbl 1218.58013

[32] B. S. Thakur and J. S. Jung, Fixed points of a certain class of mappings in uniformly convex Banach spaces, Bull. KoreanMath. Soc. 34 (1997), no. 3, 385–394. | Zbl 0902.47051

[33] C. Villani, Optimal transport, old and new, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338, Springer-Verlag, Berlin, 2009.

[34] H.K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), no. 12, 1127–1138. | Zbl 0757.46033