Orthogonal series regression estimators for an irregularly spaced design
Popiński, Waldemar
Applicationes Mathematicae, Tome 27 (2000), p. 309-318 / Harvested from The Polish Digital Mathematics Library

Nonparametric orthogonal series regression function estimation is investigated in the case of a fixed point design where the observation points are irregularly spaced in a finite interval [a,b]i ⊂ ℝ. Convergence rates for the integrated mean-square error and pointwise mean-square error are obtained in the case of estimators constructed using the Legendre polynomials and Haar functions for regression functions satisfying the Lipschitz condition.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:219275
@article{bwmeta1.element.bwnjournal-article-zmv27i3p309bwm,
     author = {Waldemar Popi\'nski},
     title = {Orthogonal series regression estimators for an irregularly spaced design},
     journal = {Applicationes Mathematicae},
     volume = {27},
     year = {2000},
     pages = {309-318},
     zbl = {0990.62033},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv27i3p309bwm}
}
Popiński, Waldemar. Orthogonal series regression estimators for an irregularly spaced design. Applicationes Mathematicae, Tome 27 (2000) pp. 309-318. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv27i3p309bwm/

[000] [1] T. T. Cai and L. D. Brown, Wavelet estimation for samples with random uniform design, Statist. Probab. Lett. 42 (1999), 313-321. | Zbl 0940.62037

[001] [2] J. Engel, A simple wavelet approach to nonparametric regression from recursive partitioning schemes, J. Multivariate Anal. 49 (1994), 242-254. | Zbl 0795.62034

[002] [3] R. L. Eubank, J. D. Hart and P. Speckman, Trigonometric series regression estimators with an application to partially linear models, ibid. 32 (1990), 70-83. | Zbl 0709.62041

[003] [4] T. Gasser and H. G. Müller, Kernel estimation of regression functions, in: Smoothing Techniques for Curve Estimation, T. Gasser and M. Rosenblatt (eds.), Lecture Notes in Math. 757, Springer, Heidelberg, 1979, 23-68.

[004] [5] G. V. Milovanović, D. S. Mitrinović and T. M. Rassias, Topics on Polynomials: Extremal Problems, Inequalities, Zeros, World Sci., Singapore, 1994. | Zbl 0848.26001

[005] [6] I. Novikov and E. Semenov, Haar Series and Linear Operators, Math. Appl. 367, Kluwer, Dordrecht, 1997. | Zbl 0865.42024

[006] [7] E. Rafajłowicz, Nonparametric orthogonal series estimators of regression: a class attaining the optimal convergence rate in L2, Statist. Probab. Lett. 5 (1987), 219-224. | Zbl 0605.62030

[007] [8] E. Rafajłowicz, Nonparametric least-squares estimation of a regression function, Statistics 19 (1988), 349-358. | Zbl 0649.62034

[008] [9] L. Rutkowski, Orthogonal series estimates of a regression function with application in system identification, in: W. Grossmann et al. (eds.), Probability and Statistical Inference, Reidel, 1982, 343-347.

[009] [10] G. Sansone, Orthogonal Functions, Interscience, New York, 1959.

[010] [11] I. I. Sharapudinov, On convergence of least-squares estimators, Mat. Zametki 53 (1993), 131-143 (in Russian). | Zbl 0816.65146

[011] [12] P. K. Suetin, Classical Orthogonal Polynomials, Nauka, Moscow, 1976 (in Russian).