SPDEs with pseudodifferential generators: the existence of a density
Tindel, Samy
Applicationes Mathematicae, Tome 27 (2000), p. 287-308 / Harvested from The Polish Digital Mathematics Library

We consider the equation du(t,x)=Lu(t,x)+b(u(t,x))dtdx+σ(u(t,x))dW(t,x) where t belongs to a real interval [0,T], x belongs to an open (not necessarily bounded) domain 𝒪, and L is a pseudodifferential operator. We show that under sufficient smoothness and nondegeneracy conditions on L, the law of the solution u(t,x) at a fixed point (t,x)[0,T]×𝒪 is absolutely continuous with respect to the Lebesgue measure.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:219274
@article{bwmeta1.element.bwnjournal-article-zmv27i3p287bwm,
     author = {Samy Tindel},
     title = {SPDEs with pseudodifferential generators: the existence of a density},
     journal = {Applicationes Mathematicae},
     volume = {27},
     year = {2000},
     pages = {287-308},
     zbl = {0998.60062},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv27i3p287bwm}
}
Tindel, Samy. SPDEs with pseudodifferential generators: the existence of a density. Applicationes Mathematicae, Tome 27 (2000) pp. 287-308. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv27i3p287bwm/

[000] [1] V. Bally and E. Pardoux, Malliavin calculus for white noise driven parabolic SPDEs, Potential Anal. 9 (1998), 27-64. | Zbl 0928.60040

[001] [2] Z. Brzeźniak, On stochastic convolution in Banach spaces and applications, Stochastics Stochastics Rep. 61 (1997), 245-295. | Zbl 0891.60056

[002] [3] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge Univ. Press, 1992. | Zbl 0761.60052

[003] [4] C. Donati et E. Pardoux, EDPS réfléchies et calcul de Malliavin, Bull. Sci. Math. 121 (1997), 405-422.

[004] [5] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math. 840, Springer, Berlin, 1981. | Zbl 0456.35001

[005] [6] N. Jacob, Feller semigroups, Dirichlet forms, and pseudo-differential operators, Forum Math. 4 (1992), 433-446. | Zbl 0759.60078

[006] [7] G. Kallianpur and J. Xiong, Large deviation for a class of stochastic differential equations, Ann. Probab. 24 (1996), 320-345. | Zbl 0854.60026

[007] [8] P. Kotelenez, Existence, uniqueness and smoothness for a class of function valued stochastic partial differential equations driven by space-time white noise, Stochastics Stochastics Rep. 41 (1992), 177-199.

[008] [9] P. Kotelenez, A class of function and density valued stochastic partial differential equations driven by space-time white noise, to appear.

[009] [10] N. Lanjri and D. Nualart, Burgers equation driven by space-time white noise: absolute continuity of the solution, Stochastics Stochastics Rep. 66 (1999), 273-292. | Zbl 0936.60055

[010] [11] D. Márquez and M. Sanz, Taylor expansion of the density of the law in a stochastic heat equation, Collect. Math. 49 (1998), 399-415. | Zbl 0939.60067

[011] [12] A. Millet and M. Sanz, A stochastic wave equation in two space dimension: smoothness of the law, Ann. Probab. 27 (1999), 803-844. | Zbl 0944.60067

[012] [13] D. Nualart, The Malliavin Calculus and Related Topics, Springer, Berlin, 1995. | Zbl 0837.60050

[013] [14] E. Pardoux and T. Zhang, Absolute continuity of the law of the solution of a parabolic SPDE, J. Funct. Anal. 112 (1993), 447-458. | Zbl 0777.60046

[014] [15] S. Peszat and J. Zabczyk, Stochastic evolution equations with a spatially homogeneous Wiener process, Stochastic Process. Appl. 72 (1997), 187-204. | Zbl 0943.60048

[015] [16] J. Seidler, Da Prato-Zabczyk's maximal inequality revisited I, Math. Bohem. 118 (1993), 67-106. | Zbl 0785.35115

[016] [17] F. Treves, Introduction to Pseudodifferential and Fourier Integral Operators, Plenum, New York, 1982. | Zbl 0453.47027

[017] [18] J. Walsh, An introduction to stochastic partial differential equations, in: Ecole d'été de Probabilité de Saint-Flour XIV, Lecture Notes in Math. 1180, Springer, Berlin, 1986, 265-439.