Weak Hölder convergence of processes with application to the perturbed empirical process
Hamadouche, Djamel ; Suquet, Charles
Applicationes Mathematicae, Tome 26 (1999), p. 63-83 / Harvested from The Polish Digital Mathematics Library

We consider stochastic processes as random elements in some spaces of Hölder functions vanishing at infinity. The corresponding scale of spaces C0α,0 is shown to be isomorphic to some scale of Banach sequence spaces. This enables us to obtain some tightness criterion in these spaces. As an application, we prove the weak Hölder convergence of the convolution-smoothed empirical process of an i.i.d. sample (X1,...,Xn) under a natural assumption about the regularity of the marginal distribution function F of the sample. In particular, when F is Lipschitz, the best possible bound α<1/2 for the weak α-Hölder convergence of such processes is achieved.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:219226
@article{bwmeta1.element.bwnjournal-article-zmv26i1p63bwm,
     author = {Djamel Hamadouche and Charles Suquet},
     title = {Weak H\"older convergence of processes with application to the perturbed empirical process},
     journal = {Applicationes Mathematicae},
     volume = {26},
     year = {1999},
     pages = {63-83},
     zbl = {0998.60008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv26i1p63bwm}
}
Hamadouche, Djamel; Suquet, Charles. Weak Hölder convergence of processes with application to the perturbed empirical process. Applicationes Mathematicae, Tome 26 (1999) pp. 63-83. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv26i1p63bwm/

[000] [1] P. Baldi and B. Roynette, Some exact equivalents for the Brownian motion in Hölder norm, Probab. Theory Related Fields 93 (1993), 457-484. | Zbl 0767.60078

[001] [2] P. Billingsley, Convergence of Probability Measures, Wiley, 1968.

[002] [3] Z. Ciesielski, On the isomorphisms of the spaces Hα and m, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 8 (1960), 217-222. | Zbl 0093.12301

[003] [4] Z. Ciesielski, Hölder conditions for realizations of Gaussian processes, Trans. Amer. Math. Soc. 99 (1961), 403-413. | Zbl 0133.10502

[004] [5] Z. Ciesielski, G. Kerkyacharian et B. Roynette, Quelques espaces fonctionnels associés à des processus gaussiens, Studia Math. 107 (1993), 171-204.

[005] [6] L. T. Fernholz, Almost sure convergence of smoothed empirical distribution functions, Scand. J. Statist. 18 (1991), 255-262. | Zbl 0798.62063

[006] [7] D. Hamadouche, Invariance principles in Hölder spaces, Portugal. Math. (1998), to appear. | Zbl 0965.60011

[007] [8] D. Hamadouche, Weak convergence of smoothed empirical process in Hölder spaces, Statist. Probab. Letters 36 (1998), 393-400. | Zbl 0927.60032

[008] [9] T. Hida, Brownian Motion, Springer, 1980. | Zbl 0423.60063

[009] [10] G. Kerkyacharian et B. Roynette, Une démonstration simple des théorèmes de Kolmogorov, Donsker et Ito-Nisio, C. R. Acad. Sci. Paris Sér. I 312 (1991), 877-882. | Zbl 0764.60008

[010] [11] J. Lamperti, On convergence of stochastic processes, Trans. Amer. Math. Soc. 104 (1962), 430-435. | Zbl 0113.33502

[011] [12] Yu. V. Prohorov [Yu. V. Prokhorov], Convergence of random processes and limit theorems in probability theory, Theory Probab. Appl. 1 (1956), 157-214.

[012] [13] G. R. Shorack and J. A. Wellner, Empirical Processes with Applications to Statistics, Wiley, 1986. | Zbl 1170.62365

[013] [14] I. Singer, Bases in Banach Spaces II, Springer, 1981.

[014] [15] S. Sun, Perturbed empirical distribution functions and quantiles under dependence, J. Theoret. Probab. 8 (1995), 763-777. | Zbl 0862.60019

[015] [16] C. Suquet, Tightness in Schauder decomposable Banach spaces, Translations of A.M.S., Proceedings of the St Petersburg Math. Soc., to appear.