Poincaré-Melnikov theory for n-dimensional diffeomorphisms
Baldomà, M. ; Fontich, E.
Applicationes Mathematicae, Tome 25 (1998), p. 129-152 / Harvested from The Polish Digital Mathematics Library

We consider perturbations of n-dimensional maps having homo-heteroclinic connections of compact normally hyperbolic invariant manifolds. We justify the applicability of the Poincaré-Melnikov method by following a geometric approach. Several examples are included.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:219197
@article{bwmeta1.element.bwnjournal-article-zmv25i2p129bwm,
     author = {M. Baldom\`a and E. Fontich},
     title = {Poincar\'e-Melnikov theory for n-dimensional diffeomorphisms},
     journal = {Applicationes Mathematicae},
     volume = {25},
     year = {1998},
     pages = {129-152},
     zbl = {0909.58029},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-zmv25i2p129bwm}
}
Baldomà, M.; Fontich, E. Poincaré-Melnikov theory for n-dimensional diffeomorphisms. Applicationes Mathematicae, Tome 25 (1998) pp. 129-152. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-zmv25i2p129bwm/

[000] [1] N. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1972.

[001] [2] V. I. Arnold, Instability of dynamical systems with several degrees of freedom, Soviet Math. Dokl. 5 (1964), 581-585. | Zbl 0135.42602

[002] [3] T. Bountis, A. Goriely and M. Kollmann, A Melnikov vector for N-dimensional mappings, Phys. Lett. A 206 (1995), 38-48. | Zbl 1020.37506

[003] [4] S. N. Chow, J. K. Hale and J. Mallet-Paret, An example of bifurcation to homoclinic orbits, J. Differential Equations 37 (1980), 351-373. | Zbl 0439.34035

[004] [5] A. Delshams and R. Ramírez-Ros, Poincaré-Melnikov-Arnold method for analytic planar maps, Nonlinearity 9 (1996), 1-26.

[005] [6] A. Delshams and R. Ramírez-Ros, Melnikov potential for exact symplectic maps, preprint, 1996.

[006] [7] R. W. Easton, Computing the dependence on a parameter of a family of unstable manifolds: generalized Melnikov formulas, Nonlinear Anal. 8 (1984), 1-4. | Zbl 0536.58027

[007] [8] N. Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J. 21 (1971), 193-226. | Zbl 0246.58015

[008] [9] J. M. Gambaudo, Perturbation de l’application temps τ’ d’un champ de vecteurs intégrable de R2, C. R. Acad. Sci. Paris 297 (1987), 245-248. | Zbl 0546.34035

[009] [10] M. Glasser, V. G. Papageorgiu and T. C. Bountis, Melnikov's function for two-dimensional mappings, SIAM J. Appl. Math. 49 (1989), 692-703.

[010] [11] J. Guckenheimer and P. J. Holmes, Nonlinear Oscillations, Dynamical Sys- tems, and Bifurcations of Vector Fields, Springer, New York, 1983. | Zbl 0515.34001

[011] [12] M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Math. 583, Springer, New York, 1977.

[012] [13] H. E. Lomelí, Transversal heteroclinic orbits for perturbed billiards, preprint, 1994.

[013] [14] V. K. Melnikov, On the stability of the center for time periodic perturbations, Trans. Moscow Math. Soc. 12 (1963), 3-56.

[014] [15] H. Poincaré, Les méthodes nouvelles de la mécanique céleste, Gauthier-Villars, Paris, 1882-1899.

[015] [16] J. H. Sun, Transversal homoclinic points for high-dimensional maps, preprint, 1994.

[016] [17] S. Wiggins, Global Bifurcations and Chaos: Analytical Methods, Springer, New York, 1988. | Zbl 0661.58001