Smooth operators for the regular representation on homogeneous spaces
Melo, Severino
Studia Mathematica, Tome 141 (2000), p. 149-157 / Harvested from The Polish Digital Mathematics Library

A necessary and sufficient condition for a bounded operator on L2(M), M a Riemannian compact homogeneous space, to be smooth under conjugation by the regular representation is given. It is shown that, if all formal ’Fourier multipliers with variable coefficients’ are bounded, then they are also smooth. In particular, they are smooth if M is a rank-one symmetric space.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:216794
@article{bwmeta1.element.bwnjournal-article-smv142i2p149bwm,
     author = {Severino Melo},
     title = {Smooth operators for the regular representation on homogeneous spaces},
     journal = {Studia Mathematica},
     volume = {141},
     year = {2000},
     pages = {149-157},
     zbl = {0978.47037},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv142i2p149bwm}
}
Melo, Severino. Smooth operators for the regular representation on homogeneous spaces. Studia Mathematica, Tome 141 (2000) pp. 149-157. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv142i2p149bwm/

[000] [1] M. S. Agranovich, On elliptic pseudodifferential operators on a closed curve, Trans. Moscow Math. Soc. 47 (1985), 23-74. | Zbl 0584.35078

[001] [2] R. Beals, Characterization of pseudodifferential operators and applications, Duke Math. J. 44 (1977), 45-57; Correction, ibid. 46 (1979), 215. | Zbl 0353.35088

[002] [3] H. O. Cordes, On pseudodifferential operators and smoothness of special Lie-group representations, Manuscripta Math. 28 (1979), 51-69. | Zbl 0415.35083

[003] [4] H. O. Cordes, The Technique of Pseudodifferential Operators, Cambridge Univ. Press, 1995. | Zbl 0828.35145

[004] [5] H. O. Cordes and S. T. Melo, Smooth operators for the action of SO(3) on L2(2), Integral Equations Oper. Theory 28 (1997), 251-260. | Zbl 0909.35162

[005] [6] G. B. Folland, A Course in Abstract Harmonic Analysis, Stud. Adv. Math, CRC Press, 1995. | Zbl 0857.43001

[006] [7] S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry, Springer, 1993.

[007] [8] B. Gramsch, Relative Inversion in der Störungstheorie von Operatoren und Ψ*-Algebren, Math. Ann. 269 (1984), 27-71.

[008] [9] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, 1978.

[009] [10] L. Hörmander, The Analysis of Linear Partial Differential Operators III, Sprin- ger, 1985.

[010] [11] W. McLean, Local and global descriptions of periodic pseudodifferential operators , Math. Nachr. 150 (1991), 151-161. | Zbl 0729.35149

[011] [12] S. T. Melo, Characterizations of pseudodifferential operators on the circle, Proc. Amer. Math. Soc. 125 (1997), 1407-1412. | Zbl 0870.47030

[012] [13] K. R. Payne, Smooth tame Fréchet algebras and Lie groups of pseudodifferential operators, Comm. Pure Appl. Math. 44 (1991), 309-337. | Zbl 0763.47022

[013] [14] M. E. Taylor, Noncommutative Harmonic Analysis, Math. Surveys Monographs 22, Amer. Math. Soc., 1986. | Zbl 0604.43001

[014] [15] M. E. Taylor, Beals-Cordes-type characterizations of pseudodifferential operators, Proc. Amer. Math. Soc. 125 (1997), 1711-1716. | Zbl 0868.35149