Restriction of an operator to the range of its powers
Berkani, M.
Studia Mathematica, Tome 141 (2000), p. 163-175 / Harvested from The Polish Digital Mathematics Library

Let T be a bounded linear operator acting on a Banach space X. For each integer n, define Tn to be the restriction of T to R(Tn) viewed as a map from R(Tn) into R(Tn). In [1] and [2] we have characterized operators T such that for a given integer n, the operator Tn is a Fredholm or a semi-Fredholm operator. We continue those investigations and we study the cases where Tn belongs to a given regularity in the sense defined by Kordula and Müller in[10]. We also consider the regularity of operators with topological uniform descent.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:216760
@article{bwmeta1.element.bwnjournal-article-smv140i2p163bwm,
     author = {M. Berkani},
     title = {Restriction of an operator to the range of its powers},
     journal = {Studia Mathematica},
     volume = {141},
     year = {2000},
     pages = {163-175},
     zbl = {0978.47011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv140i2p163bwm}
}
Berkani, M. Restriction of an operator to the range of its powers. Studia Mathematica, Tome 141 (2000) pp. 163-175. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv140i2p163bwm/

[00000] [1] M. Berkani, On a class of quasi-Fredholm operators, Integral Equations Oper. Theory 34 (1999), 244-249. | Zbl 0939.47010

[00001] [2] M. Berkani and M. Sarih, On semi-B-Fredholm operators, submitted.

[00002] [3] S. R. Caradus, Operator Theory of the Pseudo-Inverse, Queen's Papers in Pure and Appl. Math. 38 (1974), Queen's Univ., 1974. | Zbl 0286.47001

[00003] [4] S. Grabiner, Uniform ascent and descent of bounded operators, J. Math. Soc. Japan 34 (1982), 317-337. | Zbl 0477.47013

[00004] [5] R. Harte, On Kato non-singularity, Studia Math. 117 (1996), 107-114. | Zbl 0838.47005

[00005] [6] R. Harte and W. Y. Lee, A note on the punctured neighbourhood theorem, Glasgow Math. J. 39 (1997), 269-273. | Zbl 0894.47009

[00006] [7] M. A. Kaashoek, Ascent, descent, nullity and defect, a note on a paper by A. E. Taylor, Math. Ann. 172 (1967), 105-115. | Zbl 0152.33803

[00007] [8] T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Anal. Math. 6 (1958), 261-322. | Zbl 0090.09003

[00008] [9] J. J. Koliha, M. Mbekhta, V. Müller and P. W. Poon, Corrigendum and addendum: "On the axiomatic theory of spectrum II", Studia Math. 130 (1998), 193-198. | Zbl 0914.47016

[00009] [10] V. Kordula and V. Müller, On the axiomatic theory of spectrum, ibid. 119 (1996), 109-128. | Zbl 0857.47001

[00010] [11] J. P. Labrousse, Les opérateurs quasi-Fredholm: une généralisation des opérateurs semi-Fredholm, Rend. Circ. Mat. Palermo (2) 29 (1980), 161-258. | Zbl 0474.47008

[00011] [12] M. Mbekhta and M. Müller, On the axiomatic theory of spectrum II, Studia Math. 119 (1996), 129-147. | Zbl 0857.47002

[00012] [13] P. W. Poon, Spectral properties and structure theorems for bounded linear operators, thesis, Dept. of Math. and Statist., Univ. of Melbourne, 1997.

[00013] [14] C. Schmoeger, On a class of generalized Fredholm operators, I, Demonstratio Math. 30 (1997), 829-842. | Zbl 0903.47006

[00014] [15] C. Schmoeger, On a class of generalized Fredholm operators, V, ibid. 32 (1999), 595-604. | Zbl 0953.47010

[00015] [16] C. Schmoeger, On a generalized punctured neighborhood theorem in ℒ(X), Proc. Amer. Math. Soc. 123 (1995), 1237-1240.