Degenerate evolution problems and Beta-type operators
Attalienti, Antonio ; Campiti, Michele
Studia Mathematica, Tome 141 (2000), p. 117-139 / Harvested from The Polish Digital Mathematics Library

The present paper is concerned with the study of the differential operator Au(x):=α(x)u”(x)+β(x)u’(x) in the space C([0,1)] and of its adjoint Bv(x):=((αv)’(x)-β(x)v(x))’ in the space L1(0,1), where α(x):=x(1-x)/2 (0≤x≤1). A careful analysis of their main properties is carried out in view of some generation results available in [6, 12, 20] and [25]. In addition, we introduce and study two different kinds of Beta-type operators as a generalization of similar operators defined in [18]. Among the corresponding approximation results, we show how they can be used in order to represent explicitly the solutions of the Cauchy problems associated with the operators A and Ã, where à is equal to B up to a suitable bounded additive perturbation.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:216758
@article{bwmeta1.element.bwnjournal-article-smv140i2p117bwm,
     author = {Antonio Attalienti and Michele Campiti},
     title = {Degenerate evolution problems and Beta-type operators},
     journal = {Studia Mathematica},
     volume = {141},
     year = {2000},
     pages = {117-139},
     zbl = {0987.41009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv140i2p117bwm}
}
Attalienti, Antonio; Campiti, Michele. Degenerate evolution problems and Beta-type operators. Studia Mathematica, Tome 141 (2000) pp. 117-139. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv140i2p117bwm/

[00000] [1] F. Altomare, Limit semigroups of Bernstein-Schnabl operators associated with positive projections, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 16 (1989), 259-279. | Zbl 0706.47022

[00001] [2] F. Altomare and A. Attalienti, Forward diffusion equations and positive operators, Math. Z. 225 (1997), 211-229.

[00002] [3] F. Altomare and M. Campiti, Korovkin-type Approximation Theory and its Applications, de Gruyter Stud. in Math. 17, de Gruyter, Berlin, 1994. | Zbl 0924.41001

[00003] [4] F. Altomare and I. Carbone, On some degenerate differential operators on weighted function spaces, J. Math. Anal. Appl. 213 (1997), 308-333.

[00004] [5] A. Attalienti, Generalized Bernstein-Durrmeyer operators and the associated limit semigroup, J. Approx. Theory 99 (1999), 289-309. | Zbl 0935.41020

[00005] [6] A. Attalienti and M. Campiti, On the generation of C0-semigroups in L1(I), preprint, Bari University, 1998.

[00006] [7] M. Campiti and G. Metafune, Approximation properties of recursively defined Bernstein-type operators, J. Approx. Theory 87 (1996), 243-269. | Zbl 0865.41027

[00007] [8] M. Campiti and G. Metafune, Evolution equations associated with recursively defined Bernstein-type operators, ibid., 270-290. | Zbl 0874.41010

[00008] [9] M. Campiti and G. Metafune, Approximation of solutions of some degenerate parabolic problems, Numer. Funct. Anal. Optim. 17 (1996), 23-35. | Zbl 0852.47006

[00009] [10] M. Campiti and G. Metafune, Ventcel's boundary conditions and analytic semigroups, Arch. Math. (Basel) 70 (1998), 377-390. | Zbl 0909.34051

[00010] [11] M. Campiti, G. Metafune and D. Pallara, Degenerate self-adjoint evolution equations on the unit interval, Semigroup Forum 57 (1995), 1-36. | Zbl 0915.47029

[00011] [12] P. Clément and C. A. Timmermans, On C0-semigroups generated by differential operators satisfying Ventcel’s boundary conditions, Indag. Math. 89 (1986), 379-387. | Zbl 0618.47035

[00012] [13] N. S. Ethier and T. G. Kurtz, Markov Processes, Characterization and Convergence, Wiley, 1986. | Zbl 0592.60049

[00013] [14] W. Feller, Diffusion processes in genetics, in: Proc. 2 nd Berkeley Sympos. Math. Statist. and Probab., Univ. of California Press, 1951, 227-246. | Zbl 0045.09302

[00014] [15] W. Feller, The parabolic differential equations and the associated semi-groups of transformations, Ann. of Math. 55 (1952), 468-519. | Zbl 0047.09303

[00015] [16] W. Feller, Diffusion processes in one dimension, Trans. Amer. Math. Soc. 77 (1954), 1-31. | Zbl 0059.11601

[00016] [17] T. Kato, Perturbation Theory for Linear Operators, Springer, 1966. | Zbl 0148.12601

[00017] [18] A. Lupaş, Die Folge der Beta Operatoren, Dissertation, Universität Stuttgart, 1972.

[00018] [19] R. G. Mamedov, The asymptotic value of the approximation of differentiable functions by linear positive operators, Dokl. Akad. Nauk SSSR 128 (1959), 471-474 (in Russian). | Zbl 0102.05101

[00019] [20] G. Metafune, Analyticity for some degenerate one-dimensional evolution equations, Studia Math. 127 (1998), 251-276. | Zbl 0901.35048

[00020] [21] R. Nagel (ed.), One-Parameter Semigroups of Positive Operators, Lecture Notes in Math. 1184, Springer, Berlin, 1986. | Zbl 0585.47030

[00021] [22] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, Berlin, 1983.

[00022] [23] B. Sendov and V. Popov, The Averaged Moduli of Smoothness, Pure Appl. Math., Wiley, 1988. | Zbl 0653.65002

[00023] [24] N. Shimakura, Existence and uniqueness of solutions for a diffusion model of intergroup selection, J. Math. Kyoto Univ. 25 (1985), 775-788. | Zbl 0615.92010

[00024] [25] C. A. Timmermans, On C0-semigroups in a space of bounded continuous functions in the case of entrance or natural boundary points, in: Approximation and Optimization, J. A. Gómez Fernández et al. (eds.), Lecture Notes in Math. 1354, Springer, Berlin, 1988, 209-216.

[00025] [26] H. F. Trotter, Approximation of semi-groups of operators, Pacific J. Math. 8 (1958), 887-919. | Zbl 0099.10302