Two-parameter Hardy-Littlewood inequality and its variants
Chen, Chang-Pao ; Luor, Dah-Chin
Studia Mathematica, Tome 141 (2000), p. 9-27 / Harvested from The Polish Digital Mathematics Library

Let s* denote the maximal function associated with the rectangular partial sums smn(x,y) of a given double function series with coefficients cjk. The following generalized Hardy-Littlewood inequality is investigated: ||s*||p,μCp,α,βΣj=0Σk=0(j̅)p-α-2(k̅)p-β-2|cjk|p1/p, where ξ̅=max(ξ,1), 0 < p < ∞, and μ is a suitable positive Borel measure. We give sufficient conditions on cjk and μ under which the above Hardy-Littlewood inequality holds. Several variants of this inequality are also examined. As a consequence, the ||·||p,μ-convergence property of smn(x,y) is established. These results generalize the work of Askey-Wainger [1], Balashov [2], Boas [3], Chen [5], [6], [8], [9], Marzug [15], Móricz [16]-[18], [19], Móricz-Schipp-Wade [20], Ram-Bhatia [22], Stechkin [24], Weisz [26]-[28], and Young [30].

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:216714
@article{bwmeta1.element.bwnjournal-article-smv139i1p9bwm,
     author = {Chang-Pao Chen and Dah-Chin Luor},
     title = {Two-parameter Hardy-Littlewood inequality and its variants},
     journal = {Studia Mathematica},
     volume = {141},
     year = {2000},
     pages = {9-27},
     zbl = {1036.42014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv139i1p9bwm}
}
Chen, Chang-Pao; Luor, Dah-Chin. Two-parameter Hardy-Littlewood inequality and its variants. Studia Mathematica, Tome 141 (2000) pp. 9-27. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv139i1p9bwm/

[00000] [1] R. Askey and S. Wainger, Integrability theorems for Fourier series, Duke Math. J. 33 (1966), 223-228. | Zbl 0136.36501

[00001] [2] L. A. Balashov, Series with respect to the Walsh system with monotone coefficients, Sibirsk. Mat. Zh. 12 (1971), 25-39 (in Russian). | Zbl 0224.42010

[00002] [3] R. P. Boas, Integrability Theorems for Trigonometric Transforms, Springer, Berlin, 1967. | Zbl 0145.06804

[00003] [4] T. W. Chaundy and A. E. Jolliffe, The uniform convergence of a certain class of trigonometric series, Proc. London Math. Soc. (2) 15 (1916), 214-216.

[00004] [5] C.-P. Chen, Integrability and L-convergence of multiple trigonometric series, Bull. Austral. Math. Soc. 49 (1994), 333-339. | Zbl 0795.42007

[00005] [6] C.-P. Chen, Weighted integrability and L1-convergence of multiple trigonometric series, Studia Math. 108 (1994), 177-190. | Zbl 0821.42007

[00006] [7] C.-P. Chen and G.-B. Chen, Uniform convergence of double trigonometric series, ibid. 118 (1996), 245-259.

[00007] [8] Y.-M. Chen, On the integrability of functions defined by trigonometric series, Math. Z. 66 (1956), 9-12. | Zbl 0071.06002

[00008] [9] Y.-M. Chen, Some asymptotic properties of Fourier constants and integrability theorems, ibid. 68 (1957), 227-244. | Zbl 0078.05503

[00009] [10] M. I. D'yachenko, On the convergence of double trigonometric series and Fourier series with monotone coefficients, Math. USSR-Sb. 57 (1987), 57-75. | Zbl 0654.42017

[00010] [11] S. Fridli and P. Simon, On the Dirichlet kernels and a Hardy space with respect to the Vilenkin system, Acta Math. Hungar. 45 (1985), 223-234. | Zbl 0577.42021

[00011] [12] A. E. Jolliffe, On certain trigonometric series which have a necessary and sufficient condition for uniform convergence, Proc. Cambridge Philos. Soc. 19 (1921), 191-195.

[00012] [13] L. Leindler, Generalization of inequalities of Hardy and Littlewood, Acta Sci. Math. (Szeged) 31 (1970), 279-285. | Zbl 0203.06103

[00013] [14] L. Leindler, Some inequalities of Hardy-Littlewood type, Anal. Math. 20 (1994), 95-106. | Zbl 0816.42017

[00014] [15] M. M. H. Marzug, Integrability theorem of multiple trigonometric series, J. Math. Anal. Appl. 157 (1991), 337-345.

[00015] [16] F. Móricz, On Walsh series with coefficients tending monotonically to zero, Acta Math. Acad. Sci. Hungar. 38 (1981), 183-189. | Zbl 0479.42020

[00016] [17] F. Móricz, On the maximum of the rectangular partial sums of double trigonometric series with nonnegative coefficients, Anal. Math. 15 (1989), 283-290. | Zbl 0756.42010

[00017] [18] F. Móricz, On double cosine, sine, and Walsh series with monotone coefficients, Proc. Amer. Math. Soc. 109 (1990), 417-425 | Zbl 0741.42010

[00018] [19] F. Móricz, On the integrability and L1-convergence of double trigonometric series, Studia Math. 98 (1991), 203-225. | Zbl 0724.42015

[00019] [20] F. Móricz, F. Schipp and W. R. Wade, On the integrability of double Walsh series with special coefficients, Michigan Math. J. 37 (1990), 191-201. | Zbl 0714.42017

[00020] [21] J. R. Nurcombe, On the uniform convergence of sine series with quasimonotone coefficients, J. Math. Anal. Appl. 166 (1992), 577-581. | Zbl 0756.42006

[00021] [22] B. Ram and S. S. Bhatia, On weighted integrability of double cosine series, ibid. 208 (1997), 510-519. | Zbl 0879.42008

[00022] [23] F. Schipp, P. Simon and W. R. Wade, Walsh Series, An Introduction to Dyadic Harmonic Analysis, IOP Publishing and Akadémiai Kiadó, Budapest, 1990.

[00023] [24] S. B. Stechkin, On power series and trigonometric series with monotone coefficients, Uspekhi Mat. Nauk 18 (1963), no. 1, 173-180 (in Russian). | Zbl 0113.27502

[00024] [25] G. Szegő, Orthogonal Polynomials, 4th ed., Colloq. Publ. 23, Amer. Math. Soc., Providence, RI, 1975.

[00025] [26] F. Weisz, Inequalities relative to two-parameter Vilenkin-Fourier coefficients, Studia Math. 99 (1991), 221-233. | Zbl 0728.60046

[00026] [27] F. Weisz, Martingale Hardy Spaces and Their Applications in Fourier-Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994. | Zbl 0796.60049

[00027] [28] F. Weisz, Two-parameter Hardy-Littlewood inequalities, Studia Math. 118 (1996), 175-184. | Zbl 0864.42003

[00028] [29] T. F. Xie and S. P. Zhou, The uniform convergence of certain trigonometric series, J. Math. Anal. Appl. 181 (1994), 171-180. | Zbl 0791.42004

[00029] [30] W. H. Young, On the Fourier series of bounded functions, Proc. London Math. Soc. 12 (1913), 41-70. | Zbl 44.0300.03

[00030] [31] A. Zygmund, Trigonometric Series, 2nd ed., Cambridge Univ. Press, Cambridge, 1968. | Zbl 0157.38204