An application of the Nash-Moser theorem to ordinary differential equations in Fréchet spaces
Poppenberg, M.
Studia Mathematica, Tome 133 (1999), p. 101-121 / Harvested from The Polish Digital Mathematics Library

A general existence and uniqueness result of Picard-Lindelöf type is proved for ordinary differential equations in Fréchet spaces as an application of a generalized Nash-Moser implicit function theorem. Many examples show that the assumptions of the main result are natural. Applications are given for the Fréchet spaces C(K), S(N), B(RN), DL1(N), for Köthe sequence spaces, and for the general class of subbinomic Fréchet algebras.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:216678
@article{bwmeta1.element.bwnjournal-article-smv137i2p101bwm,
     author = {M. Poppenberg},
     title = {An application of the Nash-Moser theorem to ordinary differential equations in Fr\'echet spaces},
     journal = {Studia Mathematica},
     volume = {133},
     year = {1999},
     pages = {101-121},
     zbl = {0949.34052},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv137i2p101bwm}
}
Poppenberg, M. An application of the Nash-Moser theorem to ordinary differential equations in Fréchet spaces. Studia Mathematica, Tome 133 (1999) pp. 101-121. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv137i2p101bwm/

[00000] [1] E. Bierstone, Extension of Whitney fields from subanalytic sets, Invent. Math. 46 (1978), 277-300. | Zbl 0404.58010

[00001] [2] A. Defant and K. Floret, Tensor Norms and Operator Ideals, North-Holland Math. Stud. 170, North-Holland, 1993. | Zbl 0774.46018

[00002] [3] E. Dubinsky, Differential equations and differential calculus in Montel spaces, Trans. Amer. Math. Soc. 110 (1964), 1-21. | Zbl 0119.11802

[00003] [4] A. N. Godunov, On linear differential equations in locally convex spaces, Vest. Moskov. Univ. Mat. 29 (1974), no. 5, 31-39. | Zbl 0305.34088

[00004] [5] R. S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7 (1982), 65-222. | Zbl 0499.58003

[00005] [6] G. Herzog, Über Gewöhnliche Differentialgleichungen in Frécheträumen,Ph.D. Thesis, Karlsruhe, 1992.

[00006] [7] L. Hörmander, Implicit Function Theorems, Lectures at Stanford University, Summer 1977.

[00007] [8] H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart, 1981. | Zbl 0466.46001

[00008] [9] J. Jung, Zum Satz der Inversen Funktionen in Frécheträumen, Diplomarbeit, Mainz, 1992.

[00009] [10] H. Lange, M. Poppenberg and H. Teismann, Nash-Moser methods for the solution of quasilinear Schrödinger equations, Comm. Partial Differential Equations 24 (1999), 1399-1418. | Zbl 0935.35153

[00010] [11] R. Lemmert, On ordinary differential equations in locally convex spaces, Nonlinear Anal. 10 (1986), 1385-1390. | Zbl 0612.34056

[00011] [12] S. G. Lobanov and O. G. Smolyanov, Ordinary differential equations in locally convex spaces, Russian Math. Surveys 49 (1994), 97-175. | Zbl 0834.34076

[00012] [13] S. Łojasiewicz Jr. and E. Zehnder, An inverse function theorem in Fréchet-spaces, J. Funct. Anal. 33 (1979), 165-174. | Zbl 0431.46032

[00013] [14] J. Moser, A new technique for the construction of solutions of nonlinear differential equations, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 1824-1831. | Zbl 0104.30503

[00014] [15] J. Nash, The imbedding problem for Riemannian manifolds, Ann. of Math. 63 (1956), 20-63. | Zbl 0070.38603

[00015] [16] M. Poppenberg, Characterization of the subspaces of(s) in the tame category, Arch. Math. (Basel) 54 (1990), 274-283. | Zbl 0663.46003

[00016] [17] M. Poppenberg, Characterization of the quotient spaces of(s) in the tame category, Math. Nachr. 150 (1991), 127-141. | Zbl 0778.46012

[00017] [18] M. Poppenberg, Simultaneous smoothing and interpolation with respect to E. Borel's Theorem, Arch. Math. (Basel) 61 (1993), 150-159. | Zbl 0781.46002

[00018] [19] M. Poppenberg, A smoothing property for Fréchet spaces, J. Funct. Anal. 141 (1996), 193-210.

[00019] [20] M. Poppenberg, Tame sequence space representations of spaces of C-functions, Results Math. 29 (1996), 317-334.

[00020] [21] M. Poppenberg, An inverse function theorem for Fréchet spaces satisfying a smoothing property and(DN), Math. Nachr. 206 (1999), 123-145. | Zbl 0942.58017

[00021] [22] M. Poppenberg, Smooth solutions for a class of nonlinear parabolic evolution equations, Proc. London Math. Soc., to appear.

[00022] [23] M. Poppenberg and D. Vogt, A tame splitting theorem for exact sequences of Fréchet spaces, Math. Z. 219 (1995), 141-161. | Zbl 0823.46002

[00023] [24] J. Robbin, On the existence theorem for differential equations, Proc. Amer. Math. Soc. 16 (1969), 1005-1006. | Zbl 0169.11604

[00024] [25] T M. Tidten, Fortsetzungen von C-Funktionen, welche auf einer abgeschlossenen Menge in n definiert sind, Manuscripta Math. 27 (1979), 291-312.

[00025] [26] D. Vogt, Charakterisierung der Unterräume von s, Math. Z. 155 (1977), 109-117. | Zbl 0337.46015

[00026] [27] D. Vogt, Subspaces and quotient spaces of(s), in: Functional Analysis: Surveys and Recent Results, K. D. Bierstedt and B. Fuchssteiner (eds.), North-Holland Math. Stud. 27, North-Holland, 1977, 167-187.

[00027] [28] D. Vogt, Power series space representations of nuclear Fréchet spaces, Trans. Amer. Math. Soc. 319 (1990), 191-208. | Zbl 0724.46007

[00028] [29] D. Vogt, On two classes of (F)-spaces, Arch. Math. (Basel) 45 (1985), 255-266. | Zbl 0621.46001

[00029] [30] D. Vogt and M. J. Wagner, Charakterisierung der Quotientenräume von s und eine Vermutung von Martineau, Studia Math. 67 (1980), 225-240. | Zbl 0464.46010