A general existence and uniqueness result of Picard-Lindelöf type is proved for ordinary differential equations in Fréchet spaces as an application of a generalized Nash-Moser implicit function theorem. Many examples show that the assumptions of the main result are natural. Applications are given for the Fréchet spaces , , , , for Köthe sequence spaces, and for the general class of subbinomic Fréchet algebras.
@article{bwmeta1.element.bwnjournal-article-smv137i2p101bwm, author = {M. Poppenberg}, title = {An application of the Nash-Moser theorem to ordinary differential equations in Fr\'echet spaces}, journal = {Studia Mathematica}, volume = {133}, year = {1999}, pages = {101-121}, zbl = {0949.34052}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv137i2p101bwm} }
Poppenberg, M. An application of the Nash-Moser theorem to ordinary differential equations in Fréchet spaces. Studia Mathematica, Tome 133 (1999) pp. 101-121. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv137i2p101bwm/
[00000] [1] E. Bierstone, Extension of Whitney fields from subanalytic sets, Invent. Math. 46 (1978), 277-300. | Zbl 0404.58010
[00001] [2] A. Defant and K. Floret, Tensor Norms and Operator Ideals, North-Holland Math. Stud. 170, North-Holland, 1993. | Zbl 0774.46018
[00002] [3] E. Dubinsky, Differential equations and differential calculus in Montel spaces, Trans. Amer. Math. Soc. 110 (1964), 1-21. | Zbl 0119.11802
[00003] [4] A. N. Godunov, On linear differential equations in locally convex spaces, Vest. Moskov. Univ. Mat. 29 (1974), no. 5, 31-39. | Zbl 0305.34088
[00004] [5] R. S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7 (1982), 65-222. | Zbl 0499.58003
[00005] [6] G. Herzog, Über Gewöhnliche Differentialgleichungen in Frécheträumen,Ph.D. Thesis, Karlsruhe, 1992.
[00006] [7] L. Hörmander, Implicit Function Theorems, Lectures at Stanford University, Summer 1977.
[00007] [8] H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart, 1981. | Zbl 0466.46001
[00008] [9] J. Jung, Zum Satz der Inversen Funktionen in Frécheträumen, Diplomarbeit, Mainz, 1992.
[00009] [10] H. Lange, M. Poppenberg and H. Teismann, Nash-Moser methods for the solution of quasilinear Schrödinger equations, Comm. Partial Differential Equations 24 (1999), 1399-1418. | Zbl 0935.35153
[00010] [11] R. Lemmert, On ordinary differential equations in locally convex spaces, Nonlinear Anal. 10 (1986), 1385-1390. | Zbl 0612.34056
[00011] [12] S. G. Lobanov and O. G. Smolyanov, Ordinary differential equations in locally convex spaces, Russian Math. Surveys 49 (1994), 97-175. | Zbl 0834.34076
[00012] [13] S. Łojasiewicz Jr. and E. Zehnder, An inverse function theorem in Fréchet-spaces, J. Funct. Anal. 33 (1979), 165-174. | Zbl 0431.46032
[00013] [14] J. Moser, A new technique for the construction of solutions of nonlinear differential equations, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 1824-1831. | Zbl 0104.30503
[00014] [15] J. Nash, The imbedding problem for Riemannian manifolds, Ann. of Math. 63 (1956), 20-63. | Zbl 0070.38603
[00015] [16] M. Poppenberg, Characterization of the subspaces of(s) in the tame category, Arch. Math. (Basel) 54 (1990), 274-283. | Zbl 0663.46003
[00016] [17] M. Poppenberg, Characterization of the quotient spaces of(s) in the tame category, Math. Nachr. 150 (1991), 127-141. | Zbl 0778.46012
[00017] [18] M. Poppenberg, Simultaneous smoothing and interpolation with respect to E. Borel's Theorem, Arch. Math. (Basel) 61 (1993), 150-159. | Zbl 0781.46002
[00018] [19] M. Poppenberg, A smoothing property for Fréchet spaces, J. Funct. Anal. 141 (1996), 193-210.
[00019] [20] M. Poppenberg, Tame sequence space representations of spaces of -functions, Results Math. 29 (1996), 317-334.
[00020] [21] M. Poppenberg, An inverse function theorem for Fréchet spaces satisfying a smoothing property and(DN), Math. Nachr. 206 (1999), 123-145. | Zbl 0942.58017
[00021] [22] M. Poppenberg, Smooth solutions for a class of nonlinear parabolic evolution equations, Proc. London Math. Soc., to appear.
[00022] [23] M. Poppenberg and D. Vogt, A tame splitting theorem for exact sequences of Fréchet spaces, Math. Z. 219 (1995), 141-161. | Zbl 0823.46002
[00023] [24] J. Robbin, On the existence theorem for differential equations, Proc. Amer. Math. Soc. 16 (1969), 1005-1006. | Zbl 0169.11604
[00024] [25] T M. Tidten, Fortsetzungen von -Funktionen, welche auf einer abgeschlossenen Menge in definiert sind, Manuscripta Math. 27 (1979), 291-312.
[00025] [26] D. Vogt, Charakterisierung der Unterräume von s, Math. Z. 155 (1977), 109-117. | Zbl 0337.46015
[00026] [27] D. Vogt, Subspaces and quotient spaces of(s), in: Functional Analysis: Surveys and Recent Results, K. D. Bierstedt and B. Fuchssteiner (eds.), North-Holland Math. Stud. 27, North-Holland, 1977, 167-187.
[00027] [28] D. Vogt, Power series space representations of nuclear Fréchet spaces, Trans. Amer. Math. Soc. 319 (1990), 191-208. | Zbl 0724.46007
[00028] [29] D. Vogt, On two classes of (F)-spaces, Arch. Math. (Basel) 45 (1985), 255-266. | Zbl 0621.46001
[00029] [30] D. Vogt and M. J. Wagner, Charakterisierung der Quotientenräume von s und eine Vermutung von Martineau, Studia Math. 67 (1980), 225-240. | Zbl 0464.46010