Les opérateurs semi-Fredholm sur des espaces de Hilbert non séparables
Skihri, Haïkel
Studia Mathematica, Tome 133 (1999), p. 229-253 / Harvested from The Polish Digital Mathematics Library

The aim of this paper is to study the α-semi-Fredholm operators in a nonseparable Hilbert space H for all cardinals α with 0αdimH. In the first part, we find the relation between γα(T) and c(πα(T)) for all 0-regular cardinals α, where γα is the reduced minimum modulus of weight α, c is the reduced minimum modulus (in a C*-algebra) and πα is the canonical surjection from B(H) onto Cα(H)=B(H)/Kα(H). We study the continuity points of the maps cα:Tc(πα(T)) and γα:Tγα(T). In the second part, we prove some approximation results for semi-Fredholm operators. We show that all connected components of semi-Fredholm operators of at most countable index have the same topological boundary. We show that this is not true for indices strictly greater than 0.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:216669
@article{bwmeta1.element.bwnjournal-article-smv136i3p229bwm,
     author = {Ha\"\i kel Skihri},
     title = {Les op\'erateurs semi-Fredholm sur des espaces de Hilbert non s\'eparables},
     journal = {Studia Mathematica},
     volume = {133},
     year = {1999},
     pages = {229-253},
     language = {fra},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv136i3p229bwm}
}
Skihri, Haïkel. Les opérateurs semi-Fredholm sur des espaces de Hilbert non séparables. Studia Mathematica, Tome 133 (1999) pp. 229-253. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv136i3p229bwm/

[00000] [1] C. Apostol, The reduced minimum modulus, Michigan Math. J. 32 (1985), 279-294.

[00001] [2] R. H. Bouldin, The essential minimum modulus, Indiana Univ. Math. J. 30 (1981), 513-517. | Zbl 0483.47015

[00002] [3] R. H. Bouldin, Closure of invertible operators on a Hilbert space, Proc. Amer. Math. Soc. 108 (1990), 721-726. | Zbl 0691.47001

[00003] [4] R. H. Bouldin, Distance to invertible operators without separability, ibid. 116 (1992), 489-497. | Zbl 0784.47001

[00004] [5] R. H. Bouldin, Approximating Fredholm operators on a nonseparable Hilbert space, Glasgow Math. J. 35 (1993), 167-178. | Zbl 0806.47011

[00005] [6] R. H. Bouldin, Generalization of semi-Fredholm operators, Proc. Amer. Math. Soc. 123 (1995), 3757-3763. | Zbl 0844.47007

[00006] [7] N. Bourbaki, Eléments de Mathématique. Livre I. Théorie des ensembles. Chapitre 3, Ensembles ordonnés cardinaux, nombres entiers, Hermann, Paris, 1967.

[00007] [8] L. Burlando, Distance formulas on operators whose kernel has fixed Hilbert dimension, Rend. Mat. 10 (1990), 209-238. | Zbl 0725.47020

[00008] [9] L. A. Coburn and A. Lebow, Components of invertible elements in quotient algebras of operators, Trans. Amer. Math. Soc. 130 (1968), 359-365. | Zbl 0155.18602

[00009] [10] J. B. Conway, A Course in Functional Analysis, 2nd ed., Springer, New York, 1990. | Zbl 0706.46003

[00010] [11] G. Edgar, D. Ernest and S. G. Lee, Weighing operator spectra, Indiana Univ. Math. J. 21 (1971), 61-80. | Zbl 0219.47001

[00011] [12] D. Ernest, Operators with α -closed range, Tôhoku Math. J. 24 (1972), 45-49.

[00012] [13] P. A. Fillmore, J. G. Stampfli and J. P. Williams, On the essential numerical range, the essential spectrum, and a problem of Halmos, Acta Sci. Math. (Szeged) 33 (1972), 179-192. | Zbl 0246.47006

[00013] [13] S. Goldberg, Unbounded Linear Operators, McGraw-Hill, New York, 1966. | Zbl 0148.12501

[00014] [14] B. Gramsch, Eine idealstruktur Banachscher Operatoralgebren, J. Reine Angew. Math. 225 (1967), 97-115.

[00015] [15] P. R. Halmos, A Hilbert Space Problem Book, D. Van Nostrand, 1967.

[00016] [16] R. E. Harte and M. Mbekhta, On generalized inverses in C*-algebras, Studia Math. 103 (1992), 71-77. | Zbl 0810.46062

[00017] [17] R. E. Harte and M. Mbekhta, Generalized inverses in C*-algebras II, ibid. 106 (1993), 129-138. | Zbl 0810.46063

[00018] [18] D. A. Herrero, Approximation of Hilbert Space Operators, Vol. I, Pitman, Boston, 1982. | Zbl 0494.47001

[00019] [19] S. Izumino and Y. Kato, The closure of invertible operators on a Hilbert space, Acta Sci. Math. (Szeged) 49 (1985), 321-327. | Zbl 0608.47001

[00020] [20] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1966.

[00021] [21] T. Kato, Perturbation theory for nullity, deficiency, and other quantities of linear operators, J. Anal. Math. 6 (1958), 261-322. | Zbl 0090.09003

[00022] [22] E. Luft, The two-sided closed ideals of the algebra of bounded linear operators of Hilbert space, Czechoslovak Math. J. 18 (1968), 595-605. | Zbl 0197.11301

[00023] [23] M. Mbekhta, Conorme et inverse généralisé dans les C*-algèbres, Canad. Math. Bull. 35 (1992), 515-522.

[00024] [24] H. Skhiri, On the topological boundary of semi-Fredholm operators, Proc. Amer. Math. Soc. 126 (1998), 1381-1389. | Zbl 0892.47014

[00025] [25] H. Skhiri, Opérateurs semi-Fredholm : structures et approximations, Thèse de doctorat, Université de Lille 1, 1997. | Zbl 0911.47018

[00026] [26] A. Ströh, Regular liftings in C*-algebras, Bull. Polish Acad. Sci. Math. 42 (1994), 1-7. | Zbl 0830.46045

[00027] [27] P. Y. Wu, Approximation by invertible and noninvertible operators, J. Approx. Theory 56 (1989), 267-276. | Zbl 0673.41017