Perturbation theorems for Hermitian elements in Banach algebras
Bhatia, Rajendra ; Drissi, Driss
Studia Mathematica, Tome 133 (1999), p. 111-117 / Harvested from The Polish Digital Mathematics Library

Two well-known theorems for Hermitian elements in C*-algebras are extended to Banach algebras. The first concerns the solution of the equation ax - xb = y, and the second gives sharp bounds for the distance between spectra of a and b when a, b are Hermitian.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:216625
@article{bwmeta1.element.bwnjournal-article-smv134i2p111bwm,
     author = {Rajendra Bhatia and Driss Drissi},
     title = {Perturbation theorems for Hermitian elements in Banach algebras},
     journal = {Studia Mathematica},
     volume = {133},
     year = {1999},
     pages = {111-117},
     zbl = {0940.46026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv134i2p111bwm}
}
Bhatia, Rajendra; Drissi, Driss. Perturbation theorems for Hermitian elements in Banach algebras. Studia Mathematica, Tome 133 (1999) pp. 111-117. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv134i2p111bwm/

[00000] [1] B. Aupetit, A Primer on Spectral Theory, Springer, 1991.

[00001] [2] B. Aupetit and D. Drissi Local spectrum and subharmonicity, Proc. Edinburgh Math. Soc. 39 (1996), 571-579. | Zbl 0861.47003

[00002] [3] R. Bhatia, Matrix Analysis, Springer, 1997. | Zbl 0863.15001

[00003] [4] R. Bhatia, C. Davis and P. Koosis, An extremal problem in Fourier analysis with applications to operator theory, J. Funct. Anal. 82 (1989), 138-150. | Zbl 0674.42002

[00004] [5] R. Bhatia, C. Davis and A. McIntosh, Perturbation of spectral subspaces and solution of linear operator equations, Linear Algebra Appl. 52-53 (1983), 45-67. | Zbl 0518.47013

[00005] [6] R. Bhatia and P. Rosenthal, How and why to solve the operator equation AX - XB = Y, Bull. London Math. Soc. 29 (1997), 1-21. | Zbl 0909.47011

[00006] [7] F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, Cambridge Univ. Press, 1971. | Zbl 0207.44802

[00007] [8] A. Browder, On Bernstein's inequality and the norm of Hermitian operators, Amer. Math. Monthly 78 (1971), 871-873. | Zbl 0224.47011

[00008] [9] D. E. Evans, On the spectrum of a one-parameter strongly continuous representation, Math. Scand. 39 (1976), 80-82. | Zbl 0356.47023

[00009] [10] U. Haagerup and L. Zsidó, Resolvent estimate for Hermitian operators and a related minimal extrapolation problem, Acta Sci. Math. (Szeged) 59 (1994), 503-524. | Zbl 0821.47003

[00010] [11] V. E. Katsnelson, A conservative operator has norm equal to its spectral radius, Mat. Issled. 5 (1970), 186-189 (in Russian). | Zbl 0226.47002

[00011] [12] A. N. Kolmogorov, On inequalities between upper bounds of the successive derivatives of an arbitrary function on an infinite interval, Uchen. Zap. Moskov. Gos. Univ. Mat. 30 (1939), 3-16 (in Russian); English transl.: Amer. Math. Soc. Transl. 4 (1949), 233-243.

[00012] [13] B. Ya. Levin, Lectures on Entire Functions, Transl. Math. Monographs 150, Amer. Math. Soc., 1996.

[00013] [14] R. McEachin, A sharp estimate in an operator inequality, Proc. Amer. Math. Soc. 115 (1992), 161-165. | Zbl 0757.47014

[00014] [15] J. R. Partington, The resolvent of a Hermitian operator on a Banach space, J. London Math. Soc. (2) 27 (1983), 507-512. | Zbl 0517.47003

[00015] [16] A. M. Sinclair, The norm of a Hermitian element in a Banach algebra, Proc. Amer. Math. Soc. 28 (1971), 446-450. | Zbl 0242.46035

[00016] [17] B. Sz.-Nagy, Über die Ungleichung von H. Bohr, Math. Nachr. 9 (1953), 255-259.

[00017] [18] B. Sz.-Nagy and A. Strausz, On a theorem of H. Bohr, Mat. Termész. Értes. 57 (1938), 121-133 (in Hungarian).