On the exponential stability and dichotomy of C0-semigroups
Vũ, Phóng
Studia Mathematica, Tome 133 (1999), p. 141-149 / Harvested from The Polish Digital Mathematics Library

A characterization of exponentially dichotomic and exponentially stable C0-semigroups in terms of solutions of an operator equation of Lyapunov type is presented. As a corollary a new and shorter proof of van Neerven’s recent characterization of exponential stability in terms of boundedness of convolutions of a semigroup with almost periodic functions is given.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:216591
@article{bwmeta1.element.bwnjournal-article-smv132i2p141bwm,
     author = {Ph\'ong V\~u},
     title = {On the exponential stability and dichotomy of $C\_0$-semigroups},
     journal = {Studia Mathematica},
     volume = {133},
     year = {1999},
     pages = {141-149},
     zbl = {0926.47026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv132i2p141bwm}
}
Vũ, Phóng. On the exponential stability and dichotomy of $C_0$-semigroups. Studia Mathematica, Tome 133 (1999) pp. 141-149. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv132i2p141bwm/

[00000] [1] W. Arendt, F. Räbiger and A. Sourour, Spectral properties of the operator equation AX+XB=Y, Quart. J. Math. Oxford Ser. (2) 45 (1994), 133-149. | Zbl 0826.47013

[00001] [2] Ju. L. Daleckiĭ [Yu. L. Daletskiĭ] and M. G. Krein, Stability of Solutions of Differential Equations on Banach Spaces, Amer. Math. Soc., Providence, R.I., 1974.

[00002] [3] R. Datko, Extending a theorem of A. M. Liapunov to Hilbert space, J. Math. Anal. Appl. 32 (1970), 610-616. | Zbl 0211.16802

[00003] [4] I. Erdelyi and S. W. Wang, A Local Spectral Theory for Closed Operators, London Math. Soc. Lecture Note Ser. 105, Cambridge Univ. Press, Cambridge, 1985. | Zbl 0577.47035

[00004] [5] J. M. Freeman, The tensor product of semigroups and the operator equation SX-XT=A, J. Math. Mech. 19 (1970), 819-828. | Zbl 0206.44403

[00005] [6] J. Goldstein, On the operator equation AX+XB=Q, Proc. Amer. Math. Soc. 78 (1978), 31-34. | Zbl 0354.47005

[00006] [7] Yu. Latushkin and S. Montgomery-Smith, Evolutionary semigroups and Lyapunov theorems in Banach spaces, J. Funct. Anal. 127 (1995), 173-197. | Zbl 0878.47024

[00007] [8] S. C. Lin and S. Y. Shaw, On the operator equations Ax=q and SX-XT=Q, ibid. 77 (1988), 352-363. | Zbl 0647.47028

[00008] [9] G. Lumer and M. Rosenblum, Linear operator equations, Proc. Amer. Math. Soc. 10 (1959), 32-41. | Zbl 0133.07903

[00009] [10] R. Nagel (ed.), One-Parameter Semigroups of Positive Operators, Lecture Notes in Math. 1184, Springer, Berlin, 1986. | Zbl 0585.47030

[00010] [11] J. M. A. M. van Neerven, The Asymptotic Behavior of a Semigroup of Linear Operators, Birkhäuser, Basel, 1996. | Zbl 0905.47001

[00011] [12] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983.

[00012] [13] J. Prüss, On the spectrum of C0-semigroups, Trans. Amer. Math. Soc. 284 (1984), 847-857. | Zbl 0572.47030

[00013] [14] C. R. Putnam, Commutation Properties of Hilbert Space Operators and Related Topics, Springer, New York, 1967. | Zbl 0149.35104

[00014] [15] M. Rosenblum, On the operator equation BX-XA=Q, Duke Math. J. 23 (1956), 263-269. | Zbl 0073.33003

[00015] [16] Vũ Quôc Phóng, The operator equation AX-XB=C with unbounded operators A and B and related abstract Cauchy problems, Math. Z. 208 (1991), 567-588.

[00016] [17] Vũ Quôc Phóng, On the spectrum, complete trajectories, and asymptotic stability of linear semidynamical systems, J. Differential Equations 105 (1993), 30-45.