A density theorem for algebra representations on the space (s)
Żelazko, W.
Studia Mathematica, Tome 129 (1998), p. 293-296 / Harvested from The Polish Digital Mathematics Library

We show that an arbitrary irreducible representation T of a real or complex algebra on the F-space (s), or, more generally, on an arbitrary infinite (topological) product of the field of scalars, is totally irreducible, provided its commutant is trivial. This provides an affirmative solution to a problem of Fell and Doran for representations on these spaces.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:216559
@article{bwmeta1.element.bwnjournal-article-smv130i3p293bwm,
     author = {W. \.Zelazko},
     title = {A density theorem for algebra representations on the space (s)},
     journal = {Studia Mathematica},
     volume = {129},
     year = {1998},
     pages = {293-296},
     zbl = {0928.47012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv130i3p293bwm}
}
Żelazko, W. A density theorem for algebra representations on the space (s). Studia Mathematica, Tome 129 (1998) pp. 293-296. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv130i3p293bwm/

[00000] [1] S. Banach, Théorie des Opérations Linéaires, Warszawa, 1932. | Zbl 0005.20901

[00001] [2] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, 1973. | Zbl 0271.46039

[00002] [3] J. M. G. Fell and R. S. Doran, Representations of *-Algebras, Locally Compact Groups, and Banach *-Algebraic Bundles, Vol. I, Academic Press, 1988. | Zbl 0652.46050

[00003] [4] N. Jacobson, Lectures in Abstract Algebra, Vol. II, van Nostrand, 1953.

[00004] [5] G. Köthe, Topological Vector Spaces I, Springer, 1969.

[00005] [6] S. Rolewicz, Metric Linear Spaces, PWN and Reidel, 1984.

[00006] [7] H. H. Schaefer, Topological Vector Spaces, Springer, 1971.

[00007] [8] W. Żelazko, A density theorem for F-spaces, Studia Math. 96 (1990), 159-166. | Zbl 0745.46010

[00008] [9] W. Żelazko, On a problem of Fell and Doran, Colloq. Math. 62 (1991), 31-37. | Zbl 0765.46031