Commutators of quasinilpotents and invariant subspaces
Katavolos, A. ; Stamatopoulos, C.
Studia Mathematica, Tome 129 (1998), p. 159-169 / Harvested from The Polish Digital Mathematics Library

It is proved that the set Q of quasinilpotent elements in a Banach algebra is an ideal, i.e. equal to the Jacobson radical, if (and only if) the condition [Q,Q] ⊆ Q (or a similar condition concerning anticommutators) holds. In fact, if the inner derivation defined by a quasinilpotent element p maps Q into itself then p ∈ Rad A. Higher commutator conditions of quasinilpotents are also studied. It is shown that if a Banach algebra satisfies such a condition, then every quasinilpotent element has some fixed power in the Jacobson radical. These results are applied to topologically transitive representations. As a consequence, it is proved that a closed algebra of polynomially compact operators satisfying a higher commutator condition must have an invariant nest of closed subspaces, with "gaps" of bounded dimension. In particular, if [Q,Q] ⊆ Q, then the algebra must be triangularizable. An example is given showing that this may fail for more general algebras.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:216481
@article{bwmeta1.element.bwnjournal-article-smv128i2p159bwm,
     author = {A. Katavolos and C. Stamatopoulos},
     title = {Commutators of quasinilpotents and invariant subspaces},
     journal = {Studia Mathematica},
     volume = {129},
     year = {1998},
     pages = {159-169},
     zbl = {0904.46037},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv128i2p159bwm}
}
Katavolos, A.; Stamatopoulos, C. Commutators of quasinilpotents and invariant subspaces. Studia Mathematica, Tome 129 (1998) pp. 159-169. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv128i2p159bwm/

[00000] [1] W. B. Arveson, Operator algebras and invariant subspaces, Ann. of Math. (2) 100 (1974), 433-532. | Zbl 0334.46070

[00001] [2] B. Aupetit, Propriétés spectrales des algèbres de Banach, Lecture Notes in Math. 735, Springer, 1979. | Zbl 0409.46054

[00002] [3] B. Aupetit, A Primer on Spectral Theory, Springer, 1990.

[00003] [4] B. A. Barnes and A. Katavolos, Properties of quasinilpotents in some operator algebras, Proc. Roy. Irish Acad. Sect. A 93 (1993), 155-170. | Zbl 0797.46041

[00004] [5] S. Grabiner, The nilpotency on Banach nil algebras, Proc. Amer. Math. Soc. 21 (1969), 510. | Zbl 0174.44602

[00005] [6] D. Hadwin, E. Nordgren, M. Radjabalipour, H. Radjavi and P. Rosenthal, On simultaneous triangularization of collections of operators, Houston J. Math. 17 (1991), 581-602. | Zbl 0784.47032

[00006] [7] A. Katavolos and H. Radjavi, Simultaneous triangularization of operators on a Banach space, J. London Math. Soc. (2) 41 (1990), 547-554. | Zbl 0665.47016

[00007] [8] V. I. Lomonosov, Invariant subspaces for the family of operators which commute with a completely continuous operator, Funktsional. Anal. i Prilozhen. 7 (3) (1973) (in Russian); English transl.: Functional Anal. Appl. 7 (1973), 213-214.

[00008] [9] V. Pták, Commutators in Banach algebras, Proc. Edinburgh Math. Soc. 22 (1979), 207-211. | Zbl 0407.46043

[00009] [10] M. Radjabalipour, Simultaneous triangularization of algebras of polynomially compact operators, Canad. Math. Bull. 34 (1991), 260-264. | Zbl 0749.47005

[00010] [11] H. Radjavi, The Engel-Jacobson theorem revisited, J. Algebra 111 (1987), 427-430. | Zbl 0645.15010

[00011] [12] H. Radjavi and P. Rosenthal, Invariant Subspaces, Springer, 1973. | Zbl 0269.47003

[00012] [13] J. R. Ringrose, Compact Nonselfadjoint Operators, Van Nostrand, New York, 1971. | Zbl 0223.47012

[00013] [14] P. Rosenthal, Applications of Lomonosov's lemma to non-self-adjoint operator algebras, Proc. Roy. Irish Acad. Sect. A 74 (1974), 271-281. | Zbl 0295.47045

[00014] [15] A. M. Sinclair, Automatic Continuity of Linear Operators, London Math. Soc. Lecture Note Ser. 21, Cambridge Univ. Press, 1976. | Zbl 0313.47029

[00015] [16] Z. Słodkowski, W. Wojtyński and J. Zemánek, A note on quasinilpotent elements of a Banach algebra, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), 131-134. | Zbl 0333.46034

[00016] [17] E. Vesentini, On the subharmonicity of the spectral radius, Boll. Un. Mat. Ital. 4 (1968), 427-429.

[00017] [18] P. Vrbová, A remark concerning commutativity modulo the radical in Banach algebras, Comment. Math. Univ. Carolin. 22 (1981), 145-148. | Zbl 0471.46032

[00018] [19] J. Zemánek, Spectral radius characterizations of commutativity in Banach algebras, Studia Math. 61 (1977), 257-268. | Zbl 0321.46037