Sur les isométries partielles maximales essentielles
Skhiri, Haïkel
Studia Mathematica, Tome 129 (1998), p. 135-144 / Harvested from The Polish Digital Mathematics Library

We study the problem of approximation by the sets S + K(H), Se, V + K(H) and Ve where H is a separable complex Hilbert space, K(H) is the ideal of compact operators, S=LB(H):L*L=I is the set of isometries, V = S ∪ S* is the set of maximal partial isometries, Se=LB(H):π(L*)π(L)=π(I) and Ve=SeSe* where π : B(H) → B(H)/K(H) denotes the canonical projection. We also prove that all the relevant distances are attained. This implies that all these classes are closed and we remark that Ve=V+K(H). We also show that S + K(H) is both closed and open in Se. Finally, we prove that Ve, S + K(H) and Se coincide with their boundaries (Ve), ∂(S + K(H)) and (Se) respectively.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:216479
@article{bwmeta1.element.bwnjournal-article-smv128i2p135bwm,
     author = {Ha\"\i kel Skhiri},
     title = {Sur les isom\'etries partielles maximales essentielles},
     journal = {Studia Mathematica},
     volume = {129},
     year = {1998},
     pages = {135-144},
     zbl = {0904.47013},
     language = {fra},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv128i2p135bwm}
}
Skhiri, Haïkel. Sur les isométries partielles maximales essentielles. Studia Mathematica, Tome 129 (1998) pp. 135-144. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv128i2p135bwm/

[00000] [1] C. Apostol, The reduced minimum modulus, Michigan Math. J. 32 (1985), 279-294.

[00001] [2] R. Bouldin, The essential minimum modulus, Indiana Univ. Math. J. 30 (1981), 513-517. | Zbl 0483.47015

[00002] [3] R. Bouldin, Approximation by semi-Fredholm operators with fixed nullity, Rocky Mountain J. Math. 20 (1990), 39-50. | Zbl 0727.47006

[00003] [4] J. B. Conway, A Course in Functional Analysis, 2nd ed., Springer, New York, 1990. | Zbl 0706.46003

[00004] [5] R. S. Doran and V. A. Belfi, Characterizations of C*-algebras. The Gelfand-Naimark Theorems, M. Dekker, New York, 1986. | Zbl 0597.46056

[00005] [6] P. A. Fillmore, J. G. Stampfli and J. P. Williams, On the essential numerical range, the essential spectrum, and a problem of Halmos, Acta Sci. Math. (Szeged) 33 (1972), 179-192. | Zbl 0246.47006

[00006] [7] S. Goldberg, Unbounded Linear Operators, McGraw-Hill, New York, 1966. | Zbl 0148.12501

[00007] [8] P. R. Halmos, A Hilbert Space Problem Book, D. Van Nostrand, 1967.

[00008] [9] P. de la Harpe, Initiation à l'algèbre de Calkin, Lecture Notes in Math. 725, Springer, 1978, 180-219. | Zbl 0402.46036

[00009] [10] D. A. Herrero, Approximation of Hilbert Space Operators, Vol. I, Pitman, Boston, 1982. | Zbl 0494.47001

[00010] [11] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1966. | Zbl 0148.12601

[00011] [12] D. D. Rogers, Approximation by unitary and essentially unitary operators, Acta Sci. Math. (Szeged) 39 (1977), 141-151. | Zbl 0367.47006

[00012] [13] J. Weidmann, Linear Operators in Hilbert Spaces, Springer, New York, 1980. | Zbl 0434.47001