We study the problem of approximation by the sets S + K(H), , V + K(H) and where H is a separable complex Hilbert space, K(H) is the ideal of compact operators, is the set of isometries, V = S ∪ S* is the set of maximal partial isometries, and where π : B(H) → B(H)/K(H) denotes the canonical projection. We also prove that all the relevant distances are attained. This implies that all these classes are closed and we remark that . We also show that S + K(H) is both closed and open in . Finally, we prove that , S + K(H) and coincide with their boundaries , ∂(S + K(H)) and respectively.
@article{bwmeta1.element.bwnjournal-article-smv128i2p135bwm, author = {Ha\"\i kel Skhiri}, title = {Sur les isom\'etries partielles maximales essentielles}, journal = {Studia Mathematica}, volume = {129}, year = {1998}, pages = {135-144}, zbl = {0904.47013}, language = {fra}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv128i2p135bwm} }
Skhiri, Haïkel. Sur les isométries partielles maximales essentielles. Studia Mathematica, Tome 129 (1998) pp. 135-144. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv128i2p135bwm/
[00000] [1] C. Apostol, The reduced minimum modulus, Michigan Math. J. 32 (1985), 279-294.
[00001] [2] R. Bouldin, The essential minimum modulus, Indiana Univ. Math. J. 30 (1981), 513-517. | Zbl 0483.47015
[00002] [3] R. Bouldin, Approximation by semi-Fredholm operators with fixed nullity, Rocky Mountain J. Math. 20 (1990), 39-50. | Zbl 0727.47006
[00003] [4] J. B. Conway, A Course in Functional Analysis, 2nd ed., Springer, New York, 1990. | Zbl 0706.46003
[00004] [5] R. S. Doran and V. A. Belfi, Characterizations of C*-algebras. The Gelfand-Naimark Theorems, M. Dekker, New York, 1986. | Zbl 0597.46056
[00005] [6] P. A. Fillmore, J. G. Stampfli and J. P. Williams, On the essential numerical range, the essential spectrum, and a problem of Halmos, Acta Sci. Math. (Szeged) 33 (1972), 179-192. | Zbl 0246.47006
[00006] [7] S. Goldberg, Unbounded Linear Operators, McGraw-Hill, New York, 1966. | Zbl 0148.12501
[00007] [8] P. R. Halmos, A Hilbert Space Problem Book, D. Van Nostrand, 1967.
[00008] [9] P. de la Harpe, Initiation à l'algèbre de Calkin, Lecture Notes in Math. 725, Springer, 1978, 180-219. | Zbl 0402.46036
[00009] [10] D. A. Herrero, Approximation of Hilbert Space Operators, Vol. I, Pitman, Boston, 1982. | Zbl 0494.47001
[00010] [11] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1966. | Zbl 0148.12601
[00011] [12] D. D. Rogers, Approximation by unitary and essentially unitary operators, Acta Sci. Math. (Szeged) 39 (1977), 141-151. | Zbl 0367.47006
[00012] [13] J. Weidmann, Linear Operators in Hilbert Spaces, Springer, New York, 1980. | Zbl 0434.47001