Tauberian theorems for vector-valued Fourier and Laplace transforms
Chill, Ralph
Studia Mathematica, Tome 129 (1998), p. 55-69 / Harvested from The Polish Digital Mathematics Library

Let X be a Banach space and fLl1oc(;X) be absolutely regular (i.e. integrable when divided by some polynomial). If the distributional Fourier transform of f is locally integrable then f converges to 0 at infinity in some sense to be made precise. From this result we deduce some Tauberian theorems for Fourier and Laplace transforms, which can be improved if the underlying Banach space has the analytic Radon-Nikodym property.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:216475
@article{bwmeta1.element.bwnjournal-article-smv128i1p55bwm,
     author = {Ralph Chill},
     title = {Tauberian theorems for vector-valued Fourier and Laplace transforms},
     journal = {Studia Mathematica},
     volume = {129},
     year = {1998},
     pages = {55-69},
     zbl = {0906.47006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv128i1p55bwm}
}
Chill, Ralph. Tauberian theorems for vector-valued Fourier and Laplace transforms. Studia Mathematica, Tome 129 (1998) pp. 55-69. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv128i1p55bwm/

[00000] [1] W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc. 306 (1988), 837-852. | Zbl 0652.47022

[00001] [2] W. Arendt and C. J. K. Batty, Asymptotically almost periodic solutions of inhomogeneous Cauchy problems on the half line, J. London Math. Soc., to appear. | Zbl 0952.34048

[00002] [3] W. Arendt and C. J. K. Batty, Almost periodic solutions of first and second order Cauchy problems, J. Differential Equations 137 (1997), 363-383. | Zbl 0879.34046

[00003] [4] W. Arendt and J. Prüss, Vector-valued Tauberian theorems and asymptotic behavior of linear Volterra equations, SIAM J. Math. Anal. 23 (1992), 412-448. | Zbl 0765.45009

[00004] [5] C. J. K. Batty, J. M. A. M. van Neerven and F. Räbiger, Local spectra and individual stability of uniformly bounded C0-semigroups, Trans. Amer. Math. Soc., to appear. | Zbl 0893.47026

[00005] [6] C. J. K. Batty, J. M. A. M. van Neerven and F. Räbiger, Tauberian theorems and stability of solutions of the Cauchy problem, ibid., to appear. | Zbl 0898.44001

[00006] [7] E. J. Beltrami and M. R. Wohlers, Distributions and the Boundary Values of Analytic Functions, Academic Press, New York, 1966. | Zbl 0186.19202

[00007] [8] A. V. Bukhvalov, Hardy spaces of vector-valued functions, J. Soviet Math. 16 (1981), 1051-1059 (English transl.). | Zbl 0459.46025

[00008] [9] A. V. Bukhvalov and A. A. Danilevich, Boundary properties of analytic and harmonic functions with values in Banach space, Math. Notes 31 (1982), 104-110 (English transl.). | Zbl 0496.30029

[00009] [10] R. Chill, Taubersche Sätze und Asymptotik des abstrakten Cauchy-Problems, Diplomarbeit, Universität Tübingen, 1995.

[00010] [11] R. Chill, Stability results for individual solutions of the abstract Cauchy problem via Tauberian theorems, Ulmer Sem. Funktionalanal. Differentialgleichungen 1 (1996), 122-133.

[00011] [12] P. L. Duren, Theory of Hp-Spaces, Academic Press, New York, 1970. | Zbl 0215.20203

[00012] [13] J. Esterle, E. Strouse et F. Zouakia, Stabilité asymptotique de certains semi-groupes d’opérateurs et idéaux primaires de L1(+), J. Operator Theory 28 (1992), 203-227.

[00013] [14] E. Hille and R. Phillips, Functional Analysis and Semi-Groups, Amer. Math. Soc., Providence, 1957.

[00014] [15] S. Huang and J. M. A. M. van Neerven, B-convexity, the analytic Radon-Nikodym property and individual stability of C0-semigroups, J. Math. Anal. Appl., to appear. | Zbl 0943.47029

[00015] [16] A. E. Ingham, On Wiener's method in Tauberian theorems, Proc. London Math. Soc. 38 (1933), 458-480. | Zbl 0010.35202

[00016] [17] Y. Katznelson, An Introduction to Harmonic Analysis, Wiley, New York, 1968.

[00017] [18] J. Korevaar, On Newman's quick way to the prime number theorem, Math. Intelligencer 4 (1982), 108-115. | Zbl 0496.10027

[00018] [19] B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations, Cambridge Univ. Press, 1982. | Zbl 0499.43005

[00019] [20] Y. I. Lyubich and Vũ Quôc Phóng, Asymptotic stability of linear differential equations in Banach spaces, Studia Math. 88 (1988), 37-42. | Zbl 0639.34050

[00020] [21] J. M. A. M. van Neerven, The Asymptotic Behaviour of Semigroups of Linear Operators, Oper. Theory Adv. Appl. 88, Birkhäuser, 1996.

[00021] [22] G. Pisier, Une propriété de stabilité de la classe des espaces ne contenant pas l1, C. R. Acad. Sci. Paris Sér. A 286 (1978), 747-749. | Zbl 0373.46033

[00022] [23] C. Pommerenke, Boundary Behaviour of Conformal Maps, Grundlehren Math. Wiss. 299, Springer, Berlin, 1992.

[00023] [24] R. Ryan, The F. and M. Riesz theorem for vector measures, Indag. Math. 25 (1962), 558-562.

[00024] [25] Z. Szmydt, Characterization of regular tempered distributions, Ann. Polon. Math. 41 (1983), 255-258. | Zbl 0546.46030