On extremal and perfect σ-algebras for d-actions on a Lebesgue space
Kamiński, B. ; Kowalski, Z. ; Liardet, P.
Studia Mathematica, Tome 122 (1997), p. 173-178 / Harvested from The Polish Digital Mathematics Library

We show that for every positive integer d there exists a d-action and an extremal σ-algebra of it which is not perfect.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:216406
@article{bwmeta1.element.bwnjournal-article-smv124i2p173bwm,
     author = {B. Kami\'nski and Z. Kowalski and P. Liardet},
     title = {On extremal and perfect $\sigma$-algebras for $$\mathbb{Z}$^{d}$-actions on a Lebesgue space},
     journal = {Studia Mathematica},
     volume = {122},
     year = {1997},
     pages = {173-178},
     zbl = {0882.28015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv124i2p173bwm}
}
Kamiński, B.; Kowalski, Z.; Liardet, P. On extremal and perfect σ-algebras for $ℤ^{d}$-actions on a Lebesgue space. Studia Mathematica, Tome 122 (1997) pp. 173-178. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv124i2p173bwm/

[00000] [1] M. Binkowska and B. Kamiński, Entropy increase for d-actions on a Lebesgue space, Israel J. Math. 88 (1994), 307-318. | Zbl 0826.28008

[00001] [2] J. P. Conze, Entropie d'un groupe abélien de transformations, Z. Wahrsch. Verw. Gebiete 25 (1972), 11-30. | Zbl 0261.28015

[00002] [3] S. Goldstein and O. Penrose, A non-equilibrium entropy for dynamical systems, J. Statist. Phys. 24 (1981), 325-343. | Zbl 0516.70021

[00003] [4] S. A. Kalikow, T,T-1 transformation is not loosely Bernoulli, Ann. of Math. 115 (1982), 393-409. | Zbl 0523.28018

[00004] [5] B. Kamiński, Mixing properties of two-dimensional dynamical systems with completely positive entropy, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), 453-463. | Zbl 0469.28013

[00005] [6] B. Kamiński, The theory of invariant partitions for d-actions, ibid. 29 (1981), 349-362. | Zbl 0479.28016

[00006] [7] B. Kamiński, A representation theorem for perfect partitions for 2-actions with finite entropy, Colloq. Math. 56 (1988), 121-127. | Zbl 0685.28009

[00007] [8] B. Kamiński, Decreasing nets of σ-algebras and their applications to ergodic theory, Tôhoku Math. J. 43 (1991), 263-274. | Zbl 0752.28010

[00008] [9] Z. S. Kowalski, A generalized skew product, Studia Math. 87 (1987), 215-222. | Zbl 0651.28013

[00009] [10] W. Krieger, On generators in exhaustive σ-algebras of ergodic measure-preserving transformations, Z. Wahrsch. Verw. Gebiete 20 (1971), 75-82. | Zbl 0214.07201

[00010] [11] I. Meilijson, Mixing properties of a class of skew-products, Israel J. Math. 19 (1974), 266-270. | Zbl 0305.28008

[00011] [12] V. A. Rokhlin, Lectures on the entropy theory of measure-preserving transformations, Uspekhi Mat. Nauk 22 (5) (1967), 3-56 (in Russian).

[00012] [13] T. Shimano, An invariant of systems in the ergodic theory, Tôhoku Math. J. 30 (1978), 337-350. | Zbl 0394.28009

[00013] [14] T. Shimano, The multiplicity of helices for a regularly increasing sequence of σ-fields, ibid. 36 (1984), 141-148. | Zbl 0551.28021

[00014] [15] T. Shimano, On helices for Kolmogorov system with two indices, Math. J. Toyama Univ. 14 (1991), 213-226. | Zbl 0768.60031

[00015] [16] P. Walters, Some results on the classification of non-invertible measure preserving transformations, in: Lecture Notes in Math. 318, Springer, 1973, 266-276.