Generalized limits and a mean ergodic theorem
Li, Yuan-Chuan ; Shaw, Sen-Yen
Studia Mathematica, Tome 119 (1996), p. 207-219 / Harvested from The Polish Digital Mathematics Library

For a given linear operator L on with ∥L∥ = 1 and L(1) = 1, a notion of limit, called the L-limit, is defined for bounded sequences in a normed linear space X. In the case where L is the left shift operator on and X=, the definition of L-limit reduces to Lorentz’s definition of σ-limit, which is described by means of Banach limits on . We discuss some properties of L-limits, characterize reflexive spaces in terms of existence of L-limits of bounded sequences, and formulate a version of the abstract mean ergodic theorem in terms of L-limits. A theorem of Sinclair on the form of linear functionals on a unital normed algebra in terms of states is also generalized.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:216352
@article{bwmeta1.element.bwnjournal-article-smv121i3p207bwm,
     author = {Yuan-Chuan Li and Sen-Yen Shaw},
     title = {Generalized limits and a mean ergodic theorem},
     journal = {Studia Mathematica},
     volume = {119},
     year = {1996},
     pages = {207-219},
     zbl = {0869.47008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv121i3p207bwm}
}
Li, Yuan-Chuan; Shaw, Sen-Yen. Generalized limits and a mean ergodic theorem. Studia Mathematica, Tome 119 (1996) pp. 207-219. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv121i3p207bwm/

[00000] [1] Z. U. Ahmad and Mursaleen, An application of Banach limits, Proc. Amer. Math. Soc. (1) 103 (1988), 244-246.

[00001] [2] F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, London Math. Soc. Lecture Note Ser. 2, Cambridge Univ. Press, 1971. | Zbl 0207.44802

[00002] [3] F. F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc. Lecture Ser. 10, Cambridge Univ. Press, 1973. | Zbl 0262.47001

[00003] [4] A. Brunel, H. Fong, and L. Sucheston, An ergodic superproperty of Banach spaces defined by a class of matrices, Proc. Amer. Math. Soc. 49 (1975), 373-378. | Zbl 0272.47008

[00004] [5] D. van Dulst, Reflexive and Superreflexive Banach Spaces, MCT, 1982.

[00005] [6] U. Krengel, Ergodic Theorems, de Gruyter, 1985.

[00006] [7] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167-190. | Zbl 0031.29501

[00007] [8] Mursaleen, On some new invariant matrix methods of summability, Quart. J. Math. Oxford (2) 34 (1983), 77-86.

[00008] [9] R. A. Raimi, Invariant means and invariant matrix methods of summability, Duke Math. J. 30 (1963), 81-94. | Zbl 0125.03201

[00009] [10] P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc. 36 (1972), 104-110. | Zbl 0255.40003

[00010] [11] P. Schaefer, Mappings of positive integers and subspaces of m, Portugal. Math. 38 (1979), 29-38. | Zbl 0503.47028

[00011] [12] S.-Y. Shaw, Mean ergodic theorems and linear functional equations, J. Funct. Anal. 87 (1989), 428-441. | Zbl 0704.47006

[00012] [13] A. M. Sinclair, The states of a Banach algebra generate the dual, Proc. Edinburgh Math. Soc. (2) 17 (1971), 193-200. | Zbl 0233.46062

[00013] [14] K. Yosida and S. Kakutani, Operator-theoretical treatment of Markoff's process and mean ergodic theorem, Ann. of Math. 42 (1941), 188-228. | Zbl 0024.32402