A compact set without Markov’s property but with an extension operator for C-functions
Goncharov, Alexander
Studia Mathematica, Tome 119 (1996), p. 27-35 / Harvested from The Polish Digital Mathematics Library

We give an example of a compact set K ⊂ [0, 1] such that the space ℇ(K) of Whitney functions is isomorphic to the space s of rapidly decreasing sequences, and hence there exists a linear continuous extension operator L:(K)C[0,1]. At the same time, Markov’s inequality is not satisfied for certain polynomials on K.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:216284
@article{bwmeta1.element.bwnjournal-article-smv119i1p27bwm,
     author = {Alexander Goncharov},
     title = {A compact set without Markov's property but with an extension operator for $C^$\infty$$-functions},
     journal = {Studia Mathematica},
     volume = {119},
     year = {1996},
     pages = {27-35},
     zbl = {0857.46013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv119i1p27bwm}
}
Goncharov, Alexander. A compact set without Markov’s property but with an extension operator for $C^∞$-functions. Studia Mathematica, Tome 119 (1996) pp. 27-35. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv119i1p27bwm/

[00000] [1] A. Aytuna, P. Djakov, A. Goncharov, T. Terzioğlu and V. Zahariuta, Some open problems in the theory of locally convex spaces, in: Linear Topological Spaces and Complex Analysis 1, METU-TÜBİTAK, 1994, 147-165. | Zbl 0859.46002

[00001] [2] L. P. Bos and P. D. Milman, On Markov and Sobolev type inequalities on compact sets in n, in: Topics in Polynomials of One and Several Variables and Their Applications, Th. M. Rassias, H. M. Srivastava and A. Yanushauskas (eds.), World Sci., 1993, 81-100. | Zbl 0865.46018

[00002] [3] W. Pawłucki and W. Pleśniak, Extension of C functions from sets with polynomial cusps, Studia Math. 88 (1988), 279-287. | Zbl 0778.26010

[00003] [4] W. Pleśniak, Quasianalytic functions in the sense of Bernstein, Dissertationes Math. (Rozprawy Mat.) 147 (1977). | Zbl 0359.32003

[00004] [5] W. Pleśniak, Markov’s inequality and the existence of an extension operator for C functions, J. Approx. Theory 61 (1990), 106-117.

[00005] [6] M. Tidten, Fortsetzungen von C-Funktionen, welche auf einer abgeschlossenen Menge in n definiert sind, Manuscripta Math. 27 (1979), 291-312.

[00006] [7] M. Tidten, Kriterien für die Existenz von Ausdehnungsoperatoren zu ℇ(K) für kompakte Teilmengen K von ℝ, Arch. Math. (Basel) 40 (1983), 73-81.

[00007] [8] A. F. Timan, Theory of Approximation of Functions of a Real Variable, Pergamon, Oxford, 1963. | Zbl 0117.29001

[00008] [9] D. Vogt, Charakterisierung der Unterräume von s, Math. Z. 155 (1977), 109-117. | Zbl 0337.46015

[00009] [10] D. Vogt, Sequence space representations of spaces of test functions and distributions, in: Functional Analysis, Holomorphy and Approximation Theory, G. I. Zapata (ed.), Lecture Notes in Pure and Appl. Math. 83, Dekker, 1983, 405-443.

[00011] [11] V. P. Zahariuta, Some linear topological invariants and isomorphisms of tensor products of scale's centers, Izv. Severo-Kavkaz. Nauchn. Tsentra Vyssh. Shkoly 4 (1974), 62-64 (in Russian).

[00012] [12] M. Zerner, Développement en séries de polynômes orthonormaux des fonctions indéfiniment différentiables, C. R. Acad. Sci. Paris 268 (1969), 218-220. | Zbl 0189.14601