On the type constants with respect to systems of characters of a compact abelian group
Hinrichs, Aicke
Studia Mathematica, Tome 119 (1996), p. 231-243 / Harvested from The Polish Digital Mathematics Library

We prove that there exists an absolute constant c such that for any positive integer n and any system Φ of 2n characters of a compact abelian group, 2-n/2tΦ(T)cn-1/2tn(T), where T is an arbitrary operator between Banach spaces, tΦ(T) is the type norm of T with respect to Φ and tn(T) is the usual Rademacher type-2 norm computed with n vectors. For the system of the first 2n Walsh functions this is even true with c=1. This result combined with known properties of such type norms provides easy access to quantitative versions of the fact that a nontrivial type of a Banach space implies finite cotype and nontrivial type with respect to the Walsh system or the trigonometric system.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:216275
@article{bwmeta1.element.bwnjournal-article-smv118i3p231bwm,
     author = {Aicke Hinrichs},
     title = {On the type constants with respect to systems of characters of a compact abelian group},
     journal = {Studia Mathematica},
     volume = {119},
     year = {1996},
     pages = {231-243},
     zbl = {0855.46007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv118i3p231bwm}
}
Hinrichs, Aicke. On the type constants with respect to systems of characters of a compact abelian group. Studia Mathematica, Tome 119 (1996) pp. 231-243. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv118i3p231bwm/

[00000] [1] B. Beauzamy, Introduction to Banach Spaces and their Geometry, Notas di Mat. 68, North-Holland, Amsterdam, 1982. | Zbl 0491.46014

[00001] [2] J. Bourgain, On trigonometric series in superreflexive spaces, J. London Math. Soc. (2) 24 (1981), 165-174. | Zbl 0475.46008

[00002] [3] J. Bourgain, A Hausdorff-Young inequality for B-convex Banach spaces, Pacific J. Math. 101 (1982), 255-262. | Zbl 0498.46014

[00003] [4] J. Bourgain, Subspaces of LN, arithmetical diameter and Sidon sets, in: Probability in Banach Spaces V, Proceedings, Medford 1984, Lecture Notes in Math. 1153, Springer, Berlin, 1986, 96-127.

[00004] [5] J. Diestel, H. Jarchow and A. Tonge, Absolutely summing operators, Cambridge Stud. Adv. Math. 43, Cambridge Univ. Press, 1995. | Zbl 0855.47016

[00005] [6] H. König and L. Tzafriri, Some estimates for type and cotype constants, Math. Ann. 256 (1981), 85-94. | Zbl 0459.46011

[00006] [7] J. L. Krivine, Sous-espaces de dimension finie des espaces de Banach réticulés, Ann. of Math. 104 (1976), 1-29. | Zbl 0329.46008

[00007] [8] V. Mascioni, On weak cotype and weak type in Banach spaces, Note Mat. 8 (1988), 67-110. | Zbl 0818.46020

[00008] [9] B. Maurey et G. Pisier, Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math. 58 (1976), 45-90. | Zbl 0344.47014

[00009] [10] V. D. Milman and G. Schechtman, Asymptotic Theory of Finite Dimensional Normed Spaces, Lecture Notes in Math. 1200, Springer, Berlin, 1986. | Zbl 0606.46013

[00010] [11] A. Pietsch, Gradations of the Hilbertian operator norm and geometry of Banach spaces, Forschungsergebnisse Univ. Jena N/89/6.

[00011] [12] A. Pietsch, Sequences of ideal norms, Note Mat. 10 (1990), 411-441. | Zbl 0776.47009

[00012] [13] A. Pietsch and J. Wenzel, Orthonormal systems and Banach space geometry, in preparation. | Zbl 0919.46001

[00013] [14] G. Pisier, Sur les espaces de Banach qui ne contiennent pas uniformément de l1n, C. R. Acad. Sci. Paris Sér. A 277 (1973), 991-994. | Zbl 0271.46011

[00014] [15] G. Pisier, Les inégalités de Kahane-Khintchin d'après C. Borell, Séminaire sur la Géometrie des Espaces de Banach (1977-1978), Exposé No. VII, École Polytechnique, Palaiseau. | Zbl 0388.60013

[00015] [16] G. Pisier, Factorization of Linear Operators and Geometry of Banach Spaces, CBMS Regional Conf. Ser. in Math. 60, Amer. Math. Soc., Providence, 1986.

[00016] [17] G. Pisier, Sur les espaces de Banach de dimension finie à distance extrémale d'un espace euclidien, d'après V. D. Milman et H. Wolfson, Séminaire d'Analyse Fonctionnelle (1978-1979), Exposé No. XVI, École Polytechnique, Palaiseau.

[00017] [18] N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite-Dimensional Operator Ideals, Longman, 1988.