Positive operator bimeasures and a noncommutative generalization
Ylinen, Kari
Studia Mathematica, Tome 119 (1996), p. 157-168 / Harvested from The Polish Digital Mathematics Library

For C*-algebras A and B and a Hilbert space H, a class of bilinear maps Φ: A× B → L(H), analogous to completely positive linear maps, is studied. A Stinespring type representation theorem is proved, and in case A and B are commutative, the class is shown to coincide with that of positive bilinear maps. As an application, the extendibility of a positive operator bimeasure to a positive operator measure is shown to be equivalent to various conditions involving positive scalar bimeasures, pairs of commuting projection-valued measures or pairs of commuting positive operator measures.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:216270
@article{bwmeta1.element.bwnjournal-article-smv118i2p157bwm,
     author = {Kari Ylinen},
     title = {Positive operator bimeasures and a noncommutative generalization},
     journal = {Studia Mathematica},
     volume = {119},
     year = {1996},
     pages = {157-168},
     zbl = {0862.46038},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv118i2p157bwm}
}
Ylinen, Kari. Positive operator bimeasures and a noncommutative generalization. Studia Mathematica, Tome 119 (1996) pp. 157-168. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv118i2p157bwm/

[00000] [1] S. K. Berberian, Notes on Spectral Theory, Van Nostrand Math. Stud. 5, Van Nostrand, Princeton, N.J., 1966. | Zbl 0138.39104

[00001] [2] C. Berg, J. P. R. Christensen and P. Ressel, Harmonic Analysis on Semigroups. Theory of Positive-Definite and Related Functions, Grad. Texts in Math. 100, Springer, New York, 1984. | Zbl 0619.43001

[00002] [3] M. Sh. Birman, A. M. Vershik and M. Z. Solomyak, Product of commuting spectral measures need not be countably additive, Funktsional. Anal. i Prilozhen. 13 (1) (1978), 61-62; English transl.: Funct. Anal. Appl. 13 (1979), 48-49. | Zbl 0423.28008

[00003] [4] P. D. Chen and J. F. Li, On the existence of product stochastic measures, Acta Math. Appl. Sinica 7 (1991), 120-134. | Zbl 0735.60001

[00004] [5] E. Christensen and A. M. Sinclair, Representations of completely bounded multilinear operators, J. Funct. Anal. 72 (1987), 151-181. | Zbl 0622.46040

[00005] [6] E. B. Davies, Quantum Theory of Open Systems, Academic Press, London, 1976. | Zbl 0388.46044

[00006] [7] P. R. Halmos, Measure Theory, Van Nostrand, Toronto, 1950.

[00007] [8] A. S. Holevo, A noncommutative generalization of conditionally positive definite functions, in: Quantum Probability and Applications III (Proc. Conf. Oberwolfach, 1987), Lecture Notes in Math. 1303, Springer, Berlin, 1988, 128-148.

[00008] [9] S. Karni and E. Merzbach, On the extension of bimeasures, J. Anal. Math. 55 (1990), 1-16. | Zbl 0724.28003

[00009] [10] C. Lance, On nuclear C*-algebras, J. Funct. Anal. 12 (1973), 157-176.

[00010] [11] M. Ozawa, Quantum measuring processes of continuous observables, J. Math. Phys. 25 (1984), 79-87.

[00011] [12] V. I. Paulsen, Completely Bounded Maps and Dilations, Pitman Res. Notes Math. 146, Longman, London, 1986. | Zbl 0614.47006

[00012] [13] Z.-J. Ruan, The structure of pure completely bounded and completely positive multilinear operators, Pacific J. Math. 143 (1990), 155-173. | Zbl 0663.46050

[00013] [14] W. F. Stinespring, Positive functions on C*-algebras, Proc. Amer. Math. Soc. 6 (1955), 211-216. | Zbl 0064.36703

[00014] [15] M. Takesaki, Theory of Operator Algebras I, Springer, New York, 1979.

[00015] [16] K. Ylinen, On vector bimeasures, Ann. Mat. Pura Appl. 117 (1978), 115-138. | Zbl 0399.46032

[00016] [17] K. Ylinen, Representations of bimeasures, Studia Math. 104 (1993), 269-278. | Zbl 0809.28001