Strong convergence theorems for two-parameter Walsh-Fourier and trigonometric-Fourier series
Weisz, Ferenc
Studia Mathematica, Tome 119 (1996), p. 173-194 / Harvested from The Polish Digital Mathematics Library

The martingale Hardy space Hp([0,1)2) and the classical Hardy space Hp(2) are introduced. We prove that certain means of the partial sums of the two-parameter Walsh-Fourier and trigonometric-Fourier series are uniformly bounded operators from Hp to Lp (0 < p ≤ 1). As a consequence we obtain strong convergence theorems for the partial sums. The classical Hardy-Littlewood inequality is extended to two-parameter Walsh-Fourier and trigonometric-Fourier coefficients. The dual inequalities are also verified and a Marcinkiewicz-Zygmund type inequality is obtained for BMO spaces.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:216250
@article{bwmeta1.element.bwnjournal-article-smv117i2p173bwm,
     author = {Ferenc Weisz},
     title = {Strong convergence theorems for two-parameter Walsh-Fourier and trigonometric-Fourier series},
     journal = {Studia Mathematica},
     volume = {119},
     year = {1996},
     pages = {173-194},
     zbl = {0839.42009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv117i2p173bwm}
}
Weisz, Ferenc. Strong convergence theorems for two-parameter Walsh-Fourier and trigonometric-Fourier series. Studia Mathematica, Tome 119 (1996) pp. 173-194. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv117i2p173bwm/

[00000] [1] D. L. Burkholder, R. F. Gundy and M. L. Silverstein, A maximal function characterization of the class Hp, Trans. Amer. Math. Soc. 157 (1971), 137-153. | Zbl 0223.30048

[00001] [2] R. R. Coifman, A real variable characterization of Hp, Studia Math. 51 (1974), 269-274. | Zbl 0289.46037

[00002] [3] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. | Zbl 0358.30023

[00003] [4] R. E. Edwards, Fourier Series, A Modern Introduction, Vol. 1, Springer, Berlin, 1982. | Zbl 0599.42001

[00004] [5] R. E. Edwards, Fourier Series, A Modern Introduction, Vol. 2, Springer, Berlin, 1982. | Zbl 0599.42001

[00005] [6] C. Fefferman, N. M. Rivière, and Y. Sagher, Interpolation between Hp spaces: the real method, Trans. Amer. Math. Soc. 191, (1974), 75-81. | Zbl 0285.41006

[00006] [7] C. Fefferman and E. M. Stein, Hp spaces of several variables, Acta Math. 129 (1972), 137-194. | Zbl 0257.46078

[00007] [8] N. J. Fine, On the Walsh functions, Trans. Amer. Math. Soc. 65 (1949), 372-414. | Zbl 0036.03604

[00008] [9] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, Math. Stud. 116, North-Holland, Amsterdam, 1985.

[00009] [10] A. M. Garsia, Martingale Inequalities, Seminar Notes on Recent Progress, Math. Lecture Notes Ser., Benjamin, New York, 1973.

[00010] [11] G. Gát, Investigations of certain operators with respect to the Vilenkin system, Acta Math. Hungar. 61 (1993), 131-149. | Zbl 0805.42019

[00011] [12] G. H. Hardy and J. E. Littlewood, Some new properties of Fourier constants, J. London Math. Soc. 6 (1931), 3-9. | Zbl 0001.13504

[00012] [13] N. R. Ladhawala, Absolute summability of Walsh-Fourier series, Pacific J. Math. 65 (1976), 103-108. | Zbl 0318.42023

[00013] [14] R. H. Latter, A characterization of Hp(Rn) in terms of atoms, Studia Math. 62 (1978), 92-101. | Zbl 0398.42017

[00014] [15] J. Neveu, Discrete-Parameter Martingales, North-Holland, 1971.

[00015] [16] F. Schipp, W. R. Wade, P. Simon and J. Pál, Walsh Series: An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol, 1990. | Zbl 0727.42017

[00016] [17] P. Simon, Strong convergence of certain means with respect to the Walsh-Fourier series, Acta Math. Hungar. 49 (1987), 425-431. | Zbl 0643.42020

[00017] [18] W. T. Sledd and D. A. Stegenga, An H1 multiplier theorem, Ark. Mat. 19 (1981), 265-270.

[00018] [19] B. Smith, A strong convergence theorem for H1(), in: Lecture Notes in Math. 995, Springer, Berlin, 1994, 169-173.

[00019] [20] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970. | Zbl 0207.13501

[00020] [21] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J., 1971. | Zbl 0232.42007

[00021] [22] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, New York, 1986. | Zbl 0621.42001

[00022] [23] F. Weisz, Cesàro summability of two-dimensional Walsh-Fourier series, Trans. Amer. Math. Soc., to appear. | Zbl 0866.42020

[00023] [24] F. Weisz, Inequalities relative to two-parameter Vilenkin-Fourier coefficients, Studia Math. 99 (1991), 221-233. | Zbl 0728.60046

[00024] [25] F. Weisz, Martingale Hardy Spaces and their Applications in Fourier-Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994. | Zbl 0796.60049

[00025] [26] F. Weisz, Martingale Hardy spaces for 0 < p ≤ 1, Probab. Theory Related Fields 84 (1990), 361-376. | Zbl 0687.60046

[00026] [27] F. Weisz, Strong summability of two-dimensional Walsh-Fourier series, Acta Sci. Math. (Szeged) 60 (1995), 779-803. | Zbl 0836.42016

[00027] [28] J. M. Wilson, A simple proof of the atomic decomposition for Hp(Rn), 0 < p ≤ 1, Studia Math. 74 (1982), 25-33. | Zbl 0496.42009

[00028] [29] J. M. Wilson, On the atomic decomposition for Hardy spaces, Pacific J. Math. 116 (1985), 201-207. | Zbl 0563.42012

[00029] [30] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, London, 1959. | Zbl 0085.05601