The stability radius of an operator of Saphar type
Schmoeger, Christoph
Studia Mathematica, Tome 113 (1995), p. 169-175 / Harvested from The Polish Digital Mathematics Library

A bounded linear operator T on a complex Banach space X is called an operator of Saphar type if its kernel is contained in its generalized range n=1Tn(X) and T is relatively regular. For T of Saphar type we determine the supremum of all positive numbers δ such that T - λI is of Saphar type for |λ| < δ.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:216167
@article{bwmeta1.element.bwnjournal-article-smv113i2p169bwm,
     author = {Christoph Schmoeger},
     title = {The stability radius of an operator of Saphar type},
     journal = {Studia Mathematica},
     volume = {113},
     year = {1995},
     pages = {169-175},
     zbl = {0819.47002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv113i2p169bwm}
}
Schmoeger, Christoph. The stability radius of an operator of Saphar type. Studia Mathematica, Tome 113 (1995) pp. 169-175. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv113i2p169bwm/

[00000] [1] H. Bart and D. C. Lay, The stability radius of a bundle of closed linear operators, Studia Math. 66 (1980), 307-320. | Zbl 0435.47022

[00001] [2] S. R. Caradus, Generalized Inverses and Operator Theory, Queen's Papers in Pure and Appl. Math. 50, Queen's Univ., 1978.

[00002] [3] K. H. Förster, Über die Invarianz einiger Räume, die zum Operator T-λ A gehören, Arch. Math. (Basel) 17 (1966), 56-64. | Zbl 0127.07903

[00003] [4] K. H. Förster and M. A. Kaashoek, The asymptotic behaviour of the reduced minimum modulus of a Fredholm operator, Proc. Amer. Math. Soc. 49 (1975), 123-131. | Zbl 0272.47020

[00004] [5] S. Ivanov, On holomorphic relative inverses of operator-valued functions, Pacific J. Math. 78 (1978), 345-358. | Zbl 0383.47013

[00005] [6] T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Analyse Math. 6 (1958), 261-322. | Zbl 0090.09003

[00006] [7] M. Mbekhta, Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectraux, Glasgow Math. J. 29 (1987), 159-175. | Zbl 0657.47038

[00007] [8] M. Mbekhta, Résolvant généralisé et théorème spectrale, J. Operator Theory 21 (1989), 69-105. | Zbl 0694.47002

[00008] [9] P. Saphar, Contribution à l'étude des applications linéaires dans un espace de Banach, Bull. Soc. Math. France 92 (1964), 363-384. | Zbl 0139.08502

[00009] [10] C. Schmoeger, Ein Spektralabbildungssatz, Arch. Math. (Basel) 55 (1990), 484-489.

[00010] [11] C. Schmoeger, The punctured neighbourhood theorem in Banach algebras, Proc. Roy. Irish Acad. 91A (1991), 205-218. | Zbl 0793.46027

[00011] [12] C. Schmoeger, Relatively regular operators and a spectral mapping theorem, J. Math. Anal. Appl. 175 (1993), 315-320. | Zbl 0781.47009

[00012] [13] M. A. Shubin, On holomorphic families of subspaces of a Banach space, Mat. Issled. 5 (1970), 153-165 (in Russian); English transl.: Integral Equations Operator Theory 2 (1979), 407-420.

[00013] [14] J. Zemánek, The stability radius of a semi-Fredholm operator, Integral Equations Operator Theory 8 (1985), 137-143. | Zbl 0561.47009

[00014] [15] J. Zemánek, The reduced minimum modulus and the spectrum, ibid. 12 (1989), 449-454. | Zbl 0674.47002