The upper bound of the number of eigenvalues for a class of perturbed Dirichlet forms
Cupała, Wiesław
Studia Mathematica, Tome 113 (1995), p. 109-125 / Harvested from The Polish Digital Mathematics Library

The theory of Markov processes and the analysis on Lie groups are used to study the eigenvalue asymptotics of Dirichlet forms perturbed by scalar potentials.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:216164
@article{bwmeta1.element.bwnjournal-article-smv113i2p109bwm,
     author = {Wies\l aw Cupa\l a},
     title = {The upper bound of the number of eigenvalues for a class of perturbed Dirichlet forms},
     journal = {Studia Mathematica},
     volume = {113},
     year = {1995},
     pages = {109-125},
     zbl = {0835.35101},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv113i2p109bwm}
}
Cupała, Wiesław. The upper bound of the number of eigenvalues for a class of perturbed Dirichlet forms. Studia Mathematica, Tome 113 (1995) pp. 109-125. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv113i2p109bwm/

[00000] [1] K. L. Chung, Lectures from Markov Processes to Brownian Motion, Springer, 1982. | Zbl 0503.60073

[00001] [2] W. Cupała, On the essential spectrum and eigenvalue asymptotics of certain Schrödinger operators, Studia Math. 96 (1990), 196-202. | Zbl 0716.35058

[00002] [3] W. Cupała, On the eigenvalue asymptotics of certain Schrödinger operators, ibid. 105 (1993), 101-104. | Zbl 0811.35024

[00003] [4] M. Cwikel, Weak type estimates for singular values and the number of bound states of Schrödinger operators, Ann. of Math. 106 (1977), 93-100. | Zbl 0362.47006

[00004] [5] C. L. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983), 129-206. | Zbl 0526.35080

[00005] [6] C. L. Fefferman and D. H. Phong, On the asymptotic eigenvalue distribution of a pseudo-differential operator, Proc. Nat. Acad. Sci. U.S.A. 77 (1980), 5622-5625. | Zbl 0443.35082

[00006] [7] G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161-207. | Zbl 0312.35026

[00007] [8] M. Fukushima, Dirichlet Forms and Markov Processes, North-Holland, 1980. | Zbl 0422.31007

[00008] [9] Y. Guivarc'h, Croissance polynomiale et périodes des fonctions harmoniques, Bull. Soc. Math. France 101 (1973), 333-379. | Zbl 0294.43003

[00009] [10] L. Hörmander, The spectral function of an elliptic operator, Acta Math. 121 (1968), 192-218. | Zbl 0164.13201

[00010] [11] E. Lieb, The number of bound states of one-body Schrödinger operators and the Weyl problem, unpublished. | Zbl 0445.58029

[00011] [12] K. Löwner, Über monotone Matrixfunktionen, Math. Z. 38 (1934), 177-216. | Zbl 0008.11301

[00012] [13] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 4, Academic Press, 1979. | Zbl 0405.47007

[00013] [14] G. V. Rosenblum, The distribution of the dicrete spectrum of singular differential operators, Dokl. Akad. Nauk SSSR 202 (1972), 1012-1015 (in Russian).

[00014] [15] L. P. Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1977), 247-320. | Zbl 0346.35030

[00015] [16] N. T. Varopoulos, Hardy-Littlewood theory for semigroups, J. Funct. Anal. 63 (1985), 240-260. | Zbl 0608.47047

[00016] [17] N. T. Varopoulos, Analysis on Lie groups, ibid. 76 (1988), 346-410. | Zbl 0634.22008