Ambiguous loci of the farthest distance mapping from compact convex sets
De Blasi, F. ; Myjak, J.
Studia Mathematica, Tome 113 (1995), p. 99-107 / Harvested from The Polish Digital Mathematics Library

Let be a strictly convex separable Banach space of dimension at least 2. Let K() be the space of all nonempty compact convex subsets of endowed with the Hausdorff distance. Denote by K0 the set of all X ∈ K() such that the farthest distance mapping aMX(a) is multivalued on a dense subset of . It is proved that K0 is a residual dense subset of K().

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:216147
@article{bwmeta1.element.bwnjournal-article-smv112i2p99bwm,
     author = {F. De Blasi and J. Myjak},
     title = {Ambiguous loci of the farthest distance mapping from compact convex sets},
     journal = {Studia Mathematica},
     volume = {113},
     year = {1995},
     pages = {99-107},
     zbl = {0818.52002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv112i2p99bwm}
}
De Blasi, F.; Myjak, J. Ambiguous loci of the farthest distance mapping from compact convex sets. Studia Mathematica, Tome 113 (1995) pp. 99-107. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv112i2p99bwm/

[00000] [1] E. Asplund, Farthest points in reflexive locally uniformly rotund Banach spaces, Israel J. Math. 4 (1966), 213-216. | Zbl 0143.34904

[00001] [2] K. Bartke and H. Berens, Eine Beschreibung der Nichteindeutigkeitsmenge für die beste Approximation in der Euklidischen Ebene, J. Approx. Theory 47 (1986), 54-74. | Zbl 0619.41020

[00002] [3] J. M. Borwein and S. Fitzpatrick, Existence of nearest points in Banach spaces, Canad. J. Math. 41 (1989), 702-720. | Zbl 0668.46006

[00003] [4] F. S. De Blasi, J. Myjak and P. L. Papini, Porous sets in best approximation theory, J. London Math. Soc. (2) 44 (1991), 135-142. | Zbl 0786.41027

[00004] [5] R. Deville and V. Zizler, Farthest points in w*-compact sets, Bull. Austral. Math. Soc. 38 (1988), 433-439. | Zbl 0656.46012

[00005] [6] N. Dunford and J. T. Schwartz, Linear Operators, Vol. I, Interscience, New York, 1958. | Zbl 0084.10402

[00006] [7] M. Edelstein, Farthest points of sets in uniformly convex Banach spaces, Israel J. Math. 4 (1966), 171-176. | Zbl 0151.17601

[00007] [8] P. M. Gruber, Die meisten konvexen Körper sind glatt, aber nicht zu glatt, Math. Ann. 229 (1977), 259-266. | Zbl 0342.52009

[00008] [9] K. S. Lau, Farthest points in weakly compact sets, Israel J. Math. 22 (1975), 168-174. | Zbl 0325.46022

[00009] [10] V. Klee, Some new results on smoothness and rotundity in normed linear spaces, Math. Ann. 139 (1959), 51-63. | Zbl 0092.11602

[00010] [11] S. Miyajima and F. Wada, Uniqueness of a farthest point in a bounded closed set in Banach spaces, preprint. | Zbl 0798.46009

[00011] [12] B. B. Panda and K. Dwivedi, On existence of farthest points, Indian J. Pure Appl. Math. 16 (1985), 486-490. | Zbl 0584.46008

[00012] [13] T. Zajíček, On the Fréchet differentiability of distance functions, Rend. Circ. Mat. Palermo (2) Suppl. 5 (1985), 161-165. | Zbl 0581.41028

[00013] [14] T. Zamfirescu, Using Baire category in geometry, Rend. Sem. Mat. Univers. Politec. Torino 43 (1985), 67-88. | Zbl 0601.52004

[00014] [15] T. Zamfirescu, The nearest point mapping is single valued nearly everywhere, Arch. Math. (Basel) 54 (1990), 563-566. | Zbl 0715.54013