A recurrence theorem for square-integrable martingales
Alsmeyer, Gerold
Studia Mathematica, Tome 108 (1994), p. 221-234 / Harvested from The Polish Digital Mathematics Library

Let (Mn)n0 be a zero-mean martingale with canonical filtration (n)n0 and stochastically L2-bounded increments Y1,Y2,..., which means that P(|Yn|>t|n-1)1-H(t) a.s. for all n ≥ 1, t > 0 and some square-integrable distribution H on [0,∞). Let V2=n1E(Yn2|n-1). It is the main result of this paper that each such martingale is a.s. convergent on V < ∞ and recurrent on V = ∞, i.e. P(Mn[-c,c]i.o.|V=)=1 for some c > 0. This generalizes a recent result by Durrett, Kesten and Lawler [4] who consider the case of only finitely many square-integrable increment distributions. As an application of our recurrence theorem, we obtain an extension of Blackwell’s renewal theorem to a fairly general class of processes with independent increments and linear positive drift function.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:216110
@article{bwmeta1.element.bwnjournal-article-smv110i3p221bwm,
     author = {Gerold Alsmeyer},
     title = {A recurrence theorem for square-integrable martingales},
     journal = {Studia Mathematica},
     volume = {108},
     year = {1994},
     pages = {221-234},
     zbl = {0806.60073},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv110i3p221bwm}
}
Alsmeyer, Gerold. A recurrence theorem for square-integrable martingales. Studia Mathematica, Tome 108 (1994) pp. 221-234. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv110i3p221bwm/

[00000] [1] G. Alsmeyer, On the moments of certain first passage times for linear growth processes, Stochastic Process. Appl. 25 (1987), 109-136. | Zbl 0626.60037

[00001] [2] G. Alsmeyer, Random walks with stochastically bounded increments: Renewal theory, submitted, 1991.

[00002] [3] G. Alsmeyer, Random walks with stochastically bounded increments: Renewal theory via Fourier analysis, submitted, 1991.

[00003] [4] R. Durrett, H. Kesten and G. Lawler, Making money from fair games, in: Random Walks, Brownian Motion and Interacting Particle Systems, R. Durrett and H. Kesten (eds.), Birkhäuser, Boston, 1991, 255-267. | Zbl 0746.60044

[00004] [5] R. Gundy and D. Siegmund, On a stopping rule and the central limit theorem, Ann. Math. Statist. 38 (1967), 1915-1917. | Zbl 0155.25401

[00005] [6] P. Hall and C. C. Heyde, Martingale Limit Theory and Its Application, Academic Press, New York, 1980. | Zbl 0462.60045

[00006] [7] J. H. B. Kemperman, The oscillating random walk, Stochastic Process. Appl. 2 (1974), 1-29. | Zbl 0326.60081

[00007] [8] H. Kesten and G. F. Lawler, A necessary condition for making money from fair games, Ann. Probab. 20 (1992), 855-882. | Zbl 0758.60067

[00008] [9] S. P. Lalley, A first-passage problem for a two-dimensional controlled random walk, J. Appl. Probab. 23 (1986), 670-678. | Zbl 0612.60059

[00009] [10] J. Lamperti, Criteria for the recurrence or transience of stochastic processes I, J. Math. Anal. Appl. 1 (1960), 314-330. | Zbl 0099.12901

[00010] [11] B. A. Rogozin and S. G. Foss, Recurrency of an oscillating random walk, Theor. Probab. Appl. 23 (1978), 155-162. | Zbl 0423.60059