Compactness of Hardy-type integral operators in weighted Banach function spaces
Edmunds, David ; Gurka, Petr ; Pick, Luboš
Studia Mathematica, Tome 108 (1994), p. 73-90 / Harvested from The Polish Digital Mathematics Library

We consider a generalized Hardy operator Tf(x)=ϕ(x)ʃ0xψfv. For T to be bounded from a weighted Banach function space (X,v) into another, (Y,w), it is always necessary that the Muckenhoupt-type condition =supR>0ϕχ(R,)Yψχ(0,R)X'< be satisfied. We say that (X,Y) belongs to the category M(T) if this Muckenhoupt condition is also sufficient. We prove a general criterion for compactness of T from X to Y when (X,Y) ∈ M(T) and give an estimate for the distance of T from the finite rank operators. We apply the results to Lorentz spaces and characterize pairs of Lorentz spaces which fall into M (T).

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:216062
@article{bwmeta1.element.bwnjournal-article-smv109i1p73bwm,
     author = {David Edmunds and Petr Gurka and Lubo\v s Pick},
     title = {Compactness of Hardy-type integral operators in weighted Banach function spaces},
     journal = {Studia Mathematica},
     volume = {108},
     year = {1994},
     pages = {73-90},
     zbl = {0821.46036},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv109i1p73bwm}
}
Edmunds, David; Gurka, Petr; Pick, Luboš. Compactness of Hardy-type integral operators in weighted Banach function spaces. Studia Mathematica, Tome 108 (1994) pp. 73-90. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv109i1p73bwm/

[00000] [BS] C. Bennett and R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129, Academic Press, 1988. | Zbl 0647.46057

[00001] [BER] E. I. Berezhnoǐ, Weighted inequalities of Hardy type in general ideal spaces, Soviet Math. Dokl. 43 (1991), 492-495.

[00002] [B] J. S. Bradley, Hardy inequality with mixed norms, Canad. Math. Bull. 21 (1978), 405-408. | Zbl 0402.26006

[00003] [CHK] H.-M. Chung, R. A. Hunt and D. S. Kurtz, The Hardy-Littlewood maximal function on L(p,q) spaces with weights, Indiana Univ. Math. J. 31 (1982), 109-120. | Zbl 0448.42014

[00004] [EE] D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators, Oxford Univ. Press, Oxford, 1987. | Zbl 0628.47017

[00005] [EEH] D. E. Edmunds, W. D. Evans and D. J. Harris, Approximation numbers of certain Volterra integral operators, J. London Math. Soc. 38 (1988), 471-489. | Zbl 0658.47049

[00006] [EH] W. D. Evans and D. J. Harris, Sobolev embeddings for generalized ridged domains, Proc. London Math. Soc. 54 (1987), 141-175. | Zbl 0591.46027

[00007] [H] R. A. Hunt, On L(p,q) spaces, Enseign. Math. 12 (1966), 249-276. | Zbl 0181.40301

[00008] [K] V. M. Kokilashvili, On Hardy's inequalities in weighted spaces, Soobshch. Akad. Nauk. Gruzin. SSR 96 (1979), 37-40 (in Russian). | Zbl 0434.26007

[00009] [LP] Q. Lai and L. Pick, The Hardy operator, L, and BMO, J. London Math. Soc. (2) 48 (1993), 167-177.

[00010] [LUX] W. A. J. Luxemburg, Banach Function Spaces, thesis, Delft, 1955.

[00011] [LZ] W. A. J. Luxemburg and A. C. Zaanen, Compactness of integral operators in Banach function spaces, Math. Ann. 149 (1963), 150-180. | Zbl 0106.30804

[00012] [M] V. G. Maz'ya, Sobolev Spaces, Springer, Berlin, 1985.

[00013] [MU] B. Muckenhoupt, Hardy's inequality with weights, Studia Math. 44 (1972), 31-38. | Zbl 0236.26015

[00014] [OK] B. Opic and A. Kufner, Hardy-type Inequalities, Pitman Res. Notes Math. Ser. 219, Longman Sci. & Tech., Harlow, 1990. | Zbl 0698.26007

[00015] [S] E. T. Sawyer, Weighted Lebesgue and Lorentz norm inequalities for the Hardy operator, Trans. Amer. Math. Soc. 281 (1984), 329-337. | Zbl 0538.47020

[00016] [T] G. Talenti, Osservazioni sopra una classe di disuguaglianze, Rend. Sem. Mat. Fis. Milano 39 (1969), 171-185. | Zbl 0218.26011

[00017] [TO] G. Tomaselli, A class of inequalities, Boll. Un. Mat. Ital. 21 (1969), 622-631. | Zbl 0188.12103