Some spectral inequalities involving generalized scalar operators
Aupetit, B. ; Drissi, D.
Studia Mathematica, Tome 108 (1994), p. 51-66 / Harvested from The Polish Digital Mathematics Library

In 1971, Allan Sinclair proved that for a hermitian element h of a Banach algebra and λ complex we have ∥λ + h∥ = r(λ + h), where r denotes the spectral radius. Using Levin's subordination theory for entire functions of exponential type, we extend this result locally to a much larger class of generalized spectral operators. This fundamental result improves many earlier results due to Gelfand, Hille, Colojoară-Foiaş, Vidav, Dowson, Dowson-Gillespie-Spain, Crabb-Spain, I. & V. Istrăţescu, Barnes, Pytlik, Boyadzhiev and others.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:216060
@article{bwmeta1.element.bwnjournal-article-smv109i1p51bwm,
     author = {B. Aupetit and D. Drissi},
     title = {Some spectral inequalities involving generalized scalar operators},
     journal = {Studia Mathematica},
     volume = {108},
     year = {1994},
     pages = {51-66},
     zbl = {0829.47002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv109i1p51bwm}
}
Aupetit, B.; Drissi, D. Some spectral inequalities involving generalized scalar operators. Studia Mathematica, Tome 108 (1994) pp. 51-66. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv109i1p51bwm/

[00000] [1] G. R. Allan and T. J. Ransford, Power-dominated elements in a Banach algebra, Studia Math. 94 (1989), 63-79. | Zbl 0705.46021

[00001] [2] C. Apostol, Teorie spectrală şi calcul functional, Stud. Cerc. Mat. 20 (1968), 635-668.

[00002] [3] B. Aupetit, A Primer on Spectral Theory, Springer, 1991.

[00003] [4] B. Aupetit and D. Drissi, Local spectrum theory revisited, to appear.

[00004] [5] B. A. Barnes, Operators which satisfy polynomial growth conditions, Pacific J. Math. 138 (1987), 209-219. | Zbl 0693.47001

[00005] [6] R. G. Bartle and C. A. Kariotis, Some localizations of the spectral mapping theorem, Duke Math. J. 40 (1973), 651-660. | Zbl 0268.47004

[00006] [7] R. P. Boas, Entire Functions, Academic Press, 1954. | Zbl 0058.30201

[00007] [8] B. Bollobás, A property of hermitian elements, J. London Math. Soc. 4 (1971), 379-380. | Zbl 0239.46044

[00008] [9] F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, London Math. Soc. Lecture Note Ser. 2, Cambridge University Press, 1971. | Zbl 0207.44802

[00009] [10] F. F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc. Lecture Note Ser. 10, Cambridge University Press, 1973. | Zbl 0262.47001

[00010] [11] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, 1973. | Zbl 0271.46039

[00011] [12] H. N. Bojadjiev [K. N. Boyadzhiev], New applications of Bernstein inequality to the theory of operators: a local Sinclair lemma and a generalization of the Fuglede-Putnam theorem, in: Complex Analysis and Applications 85, Sofia, 1986, 97-104.

[00012] [13] H. N. Bojadjiev [K. N. Boyadzhiev], Sinclair type inequalities for the local spectral radius and related topics, Israel J. Math. 57 (1987), 272-284. | Zbl 0648.47005

[00013] [14] A. Browder, On Bernstein's inequality and the norm of hermitian operators, Amer. Math. Monthly 78 (1971), 871-873. | Zbl 0224.47011

[00014] [15] I. Colojoară and C. Foiaş, Theory of Generalized Spectral Operators, Gordon and Breach, 1968.

[00015] [16] M. J. Crabb and P. G. Spain, Commutators and normal operators, Glasgow Math. J. 18 (1977), 197-198. | Zbl 0351.47025

[00016] [17] H. R. Dowson, Some properties of prespectral operators, Proc. Roy. Irish Acad. 74 (1974), 207-221. | Zbl 0268.47034

[00017] [18] H. R. Dowson, T. A. Gillespie and P. G. Spain, A commutativity theorem for hermitian operators, Math. Ann. 220 (1976), 215-217. | Zbl 0305.47014

[00018] [19] D. Drissi, Quelques inégalités spectrales pour les opérateurs scalaires généralisés, Ph.D. thesis, Université Laval, 1993.

[00019] [20] I. Erdelyi and R. Lange, Spectral Decompositions on Banach Spaces, Lecture Notes in Math. 623, Springer, 1977. | Zbl 0381.47001

[00020] [21] C. Foiaş, Une application des distributions vectorielles à la théorie spectrale, Bull. Sci. Math. 84 (1960), 147-158. | Zbl 0095.09905

[00021] [22] C. K. Fong, Normal operators on Banach spaces, Glasgow Math. J. 20 (1979), 163-168.

[00022] [23] I. Gelfand, Zur theorie der Charaktere der abelschen topologischen Gruppen, Rec. Math. N.S. (Mat. Sb.) 9 (51) (1941), 49-50. | Zbl 67.0407.02

[00023] [24] E. Hille, On the theory of characters of groups and semi-groups in normed vector rings, Proc. Nat. Acad. Sci. 30 (1944), 58-60. | Zbl 0061.25305

[00024] [25] E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, Amer. Math. Soc. Colloq. Publ. 31, 1957. | Zbl 0078.10004

[00025] [26] I. Istrăţescu and V. Istrăţescu, A note on the Weyl's spectrum of an operator, Rev. Roumaine Math. Pures Appl. 15 (1970), 1445-1447. | Zbl 0209.15501

[00026] [27] V. È. Kacnel'son [V. È. Katsnel'son], A conservative operator has norm equal to its spectral radius, Mat. Issled. 5 (3) (17) (1970), 186-189 (in Russian). | Zbl 0226.47002

[00027] [28] S. Kantorovitz, Classification of operators by means of their operational calculus, Trans. Amer. Math. Soc. 115 (1965), 194-224. | Zbl 0127.07801

[00028] [29] G. K. Leaf, A spectral theory for a class of linear operators, Pacific J. Math. 13 (1963), 141-155. | Zbl 0121.33502

[00029] [30] B. Ja. Levin, Distribution of Zeros of Entire Functions, Amer. Math. Soc., 1964.

[00030] [31] T. Pytlik, Analytic semigroups in Banach algebras and a theorem of Hille, Colloq. Math. 51 (1987), 287-294. | Zbl 0632.46043

[00031] [32] F. Riesz et B. Sz.-Nagy, Leçons d'analyse fonctionnelle, Acad. Sci. Hongrie, Szeged, 1955.

[00032] [33] W. Rudin, Functional Analysis, McGraw-Hill, 1973.

[00033] [34] A. M. Sinclair, The norm of a hermitian element in a Banach algebra, Proc. Amer. Math. Soc. 28 (1971), 446-450. | Zbl 0242.46035

[00034] [35] D. R. Smart, Conditionally convergent expansions, J. Austral. Math. Soc. 1 (1960), 319-333. | Zbl 0104.08901

[00035] [36] B. G. Tillman, Vector-valued distributions and the spectral theorem for self-adjoint operators in Hilbert space, Bull. Amer. Math. Soc. 69 (1963), 67-71.

[00036] [37] I. Vidav, Eine metrische Kennzeichnung der selbstadjungierten Operatoren, Math. Z. 66 (1956), 121-128. | Zbl 0071.11503

[00037] [38] P. Vrbová, On local spectral properties of operators in Banach spaces, Czechoslovak Math. J. 23 (1973), 483-492. | Zbl 0268.47006

[00038] [39] K. K. Warner, A note on a theorem of Weyl, Proc. Amer. Math. Soc. 23 (1969), 469-471. | Zbl 0192.47501

[00039] [40] F. Wolf, Operators in Banach space which admit a generalized spectral decomposition, Nederl. Akad. Wetensch. Indag. Math. 19 (1957), 302-311. | Zbl 0077.31701