Balancing vectors and convex bodies
Banaszczyk, Wojciech
Studia Mathematica, Tome 104 (1993), p. 93-100 / Harvested from The Polish Digital Mathematics Library

Let U, V be two symmetric convex bodies in n and |U|, |V| their n-dimensional volumes. It is proved that there exist vectors u1,...,unU such that, for each choice of signs ε1,...,εn=±1, one has ε1u1+...+εnunrV where r=(2πe2)-1/2n1/2(|U|/|V|)1/n. Hence it is deduced that if a metrizable locally convex space is not nuclear, then it contains a null sequence (un) such that the series n=1εnuπ(n) is divergent for any choice of signs εn=±1 and any permutation π of indices.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:216005
@article{bwmeta1.element.bwnjournal-article-smv106i1p93bwm,
     author = {Wojciech Banaszczyk},
     title = {Balancing vectors and convex bodies},
     journal = {Studia Mathematica},
     volume = {104},
     year = {1993},
     pages = {93-100},
     zbl = {0810.46009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv106i1p93bwm}
}
Banaszczyk, Wojciech. Balancing vectors and convex bodies. Studia Mathematica, Tome 104 (1993) pp. 93-100. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv106i1p93bwm/

[00000] [1] I. K. Babenko, Asymptotic volume of tori and geometry of convex bodies, Mat. Zametki 44 (1988), 177-190 (in Russian). | Zbl 0653.52008

[00001] [2] K. Ball, Volumes of sections of cubes and related problems, in: Geometric Aspects of Functional Analysis, Israel Seminar (GAFA) 1987-88, Lecture Notes in Math. 1376, Springer, Berlin 1989, 251-260.

[00002] [3] W. Banaszczyk, The Steinitz theorem on rearrangement of series for nuclear spaces, J. Reine Angew. Math. 403 (1990), 187-200. | Zbl 0682.46002

[00003] [4] W. Banaszczyk, A Beck-Fiala-type theorem for euclidean norms, Europ. J. Combin. 11 (1990), 497-500. | Zbl 0736.51011

[00004] [5] W. Banaszczyk, Additive Subgroups of Topological Vector Spaces, Lecture Notes in Math. 1466, Springer, Berlin 1991. | Zbl 0743.46002

[00005] [6] J. Beck and T. Fiala, Integer-making theorems, Discrete Appl. Math. 3 (1981), 1-8. | Zbl 0473.05046

[00006] [7] J. Beck and J. Spencer, Integral approximation sequences, Math. Programming 30 (1984), 88-98. | Zbl 0549.41015

[00007] [8] J. Bourgain and S. J. Szarek, The Banach-Mazur distance to the cube and the Dvoretzky-Rogers factorization, Israel J. Math. 62 (1988), 169-180. | Zbl 0654.46018

[00008] [9] J. W. S. Cassels, An Introduction to the Geometry of Numbers, Springer, Berlin 1959.

[00009] [10] A. Dvoretzky and C. A. Rogers, Absolute and unconditional convergence in normed linear spaces, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 192-197. | Zbl 0036.36303

[00010] [11] V. S. Grinberg and S. V. Sevastyanov, Value of the Steinitz constant, Funktsional. Anal. i Prilozhen. 14 (2) (1980), 56-57 (in Russian); English transl.: Functional Anal. Appl. 14 (1980), 125-126.

[00011] [12] B. S. Kashin, On parallelepipeds of minimal volume containing a convex body, Mat. Zametki 45 (1989), 134-135 (in Russian). | Zbl 0663.52002

[00012] [13] A. Pełczyński and S. J. Szarek, On parallelepipeds of minimal volume containing a convex symmetric body in n, Math. Proc. Cambridge Philos. Soc. 109 (1991), 125-148. | Zbl 0718.52007

[00013] [14] S. Sevastyanov, Geometry in the scheduling theory, in: Models and Methods of Optimization, Trudy Inst. Mat. 10, Nauka, Sibirsk. Otdel., Novosibirsk 1988, 226-261 (in Russian).

[00014] [15] J. Spencer, Six standard deviations suffice, Trans. Amer. Math. Soc. 289 (1985), 679-706. | Zbl 0577.05018

[00015] [16] J. Spencer, Balancing vectors in the max norm, Combinatorica 6 (1986), 55-65. | Zbl 0593.90110

[00016] [17] J. Spencer, Ten Lectures on the Probabilistic Method, Society for Industrial and Applied Mathematics, Philadelphia, Penn. 1987. | Zbl 0703.05046