Disjointness results for some classes of stable processes
Hernández, Michael ; Houdré, Christian
Studia Mathematica, Tome 104 (1993), p. 235-252 / Harvested from The Polish Digital Mathematics Library

We discuss the disjointness of two classes of stable stochastic processes: moving averages and Fourier transforms. Results on the incompatibility of these two representations date back to Urbanik. Here we extend various disjointness results to encompass larger classes of processes.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:215996
@article{bwmeta1.element.bwnjournal-article-smv105i3p235bwm,
     author = {Michael Hern\'andez and Christian Houdr\'e},
     title = {Disjointness results for some classes of stable processes},
     journal = {Studia Mathematica},
     volume = {104},
     year = {1993},
     pages = {235-252},
     zbl = {0810.60044},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv105i3p235bwm}
}
Hernández, Michael; Houdré, Christian. Disjointness results for some classes of stable processes. Studia Mathematica, Tome 104 (1993) pp. 235-252. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv105i3p235bwm/

[00000] [1] J. Benedetto and H. Heinig, Weighted Hardy spaces and the Laplace transform, in: Lecture Notes in Math. 992, Springer, 1983, 240-277.

[00001] [2] S. Cambanis and C. Houdré, Stable processes: moving averages versus Fourier transforms, Probab. Theory Related Fields 95 (1993), 75-85. | Zbl 0794.60027

[00002] [3] S. Cambanis and R. Soltani, Prediction of stable processes: spectral and moving average representations, Z. Warhrsch. Verw. Gebiete 66 (1984), 593-612. | Zbl 0528.60035

[00003] [4] N. Dunford and J. Schwartz, Linear Operators, Part I: General Theory, Wiley Interscience, New York 1957. | Zbl 0084.10402

[00004] [5] R. Edwards and G. Gaudry, Littlewood-Paley and Multiplier Theory, Springer, Berlin 1977.

[00005] [6] C. Houdré, Harmonizability, V-boundedness, (2,p)-boundedness of stochastic processes, Probab. Theory Related Fields 84 (1990), 39-54.

[00006] [7] C. Houdré, Linear and Fourier stochastic analysis, ibid. 87 (1990), 167-188. | Zbl 0688.60028

[00007] [8] R. Johnson, Recent results on weighted inequalities for the Fourier transform, in: Seminar Analysis of the Karl-Weierstraß-Institute 1986/87, Teubner-Texte Math. 106, B. Schulze and H. Triebel (eds.), Teubner, Leipzig 1988, 287-296.

[00008] [9] W. Jurkat and G. Sampson, On rearrangement and weight inequalities for the Fourier transform, Indiana Univ. Math. J. 33 (1984), 257-270. | Zbl 0536.42013

[00009] [10] J. Lakey, Weighted norm inequalities for the Fourier transform, Ph.D. Thesis, University of Maryland, College Park, 1991.

[00010] [11] A. Makagon and V. Mandrekar, The spectral representation of stable processes: harmonizability and regularity, Probab. Theory Related Fields 85 (1990), 1-11. | Zbl 0673.60041

[00011] [12] B. Rajput and J. Rosinski, Spectral representations of infinitely divisible processes, ibid. 82 (1989), 451-487. | Zbl 0659.60078

[00012] [13] J. Rosinski, On stochastic integral representation of stable processes with sample paths in Banach spaces, J. Multivariate Anal. 20 (1986), 277-307. | Zbl 0606.60041

[00013] [14] G. Samorodnitsky and M. Taqqu, Stable Random Processes, book to appear.

[00014] [15] K. Urbanik, Prediction of strictly stationary sequences, Colloq. Math. 12 (1964), 115-129. | Zbl 0126.33502

[00015] [16] K. Urbanik, Some prediction problems for strictly stationary processes, in: Proc. 5th Berkeley Sympos. Math. Statist. Probab., Vol. 2, Part I, Univ. of California Press, 1967, 235-258. | Zbl 0226.60065

[00016] [17] K. Urbanik, Random measures and harmonizable sequences, Studia Math. 31 (1968), 61-88. | Zbl 0249.60014