We discuss the disjointness of two classes of stable stochastic processes: moving averages and Fourier transforms. Results on the incompatibility of these two representations date back to Urbanik. Here we extend various disjointness results to encompass larger classes of processes.
@article{bwmeta1.element.bwnjournal-article-smv105i3p235bwm, author = {Michael Hern\'andez and Christian Houdr\'e}, title = {Disjointness results for some classes of stable processes}, journal = {Studia Mathematica}, volume = {104}, year = {1993}, pages = {235-252}, zbl = {0810.60044}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv105i3p235bwm} }
Hernández, Michael; Houdré, Christian. Disjointness results for some classes of stable processes. Studia Mathematica, Tome 104 (1993) pp. 235-252. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv105i3p235bwm/
[00000] [1] J. Benedetto and H. Heinig, Weighted Hardy spaces and the Laplace transform, in: Lecture Notes in Math. 992, Springer, 1983, 240-277.
[00001] [2] S. Cambanis and C. Houdré, Stable processes: moving averages versus Fourier transforms, Probab. Theory Related Fields 95 (1993), 75-85. | Zbl 0794.60027
[00002] [3] S. Cambanis and R. Soltani, Prediction of stable processes: spectral and moving average representations, Z. Warhrsch. Verw. Gebiete 66 (1984), 593-612. | Zbl 0528.60035
[00003] [4] N. Dunford and J. Schwartz, Linear Operators, Part I: General Theory, Wiley Interscience, New York 1957. | Zbl 0084.10402
[00004] [5] R. Edwards and G. Gaudry, Littlewood-Paley and Multiplier Theory, Springer, Berlin 1977.
[00005] [6] C. Houdré, Harmonizability, V-boundedness, (2,p)-boundedness of stochastic processes, Probab. Theory Related Fields 84 (1990), 39-54.
[00006] [7] C. Houdré, Linear and Fourier stochastic analysis, ibid. 87 (1990), 167-188. | Zbl 0688.60028
[00007] [8] R. Johnson, Recent results on weighted inequalities for the Fourier transform, in: Seminar Analysis of the Karl-Weierstraß-Institute 1986/87, Teubner-Texte Math. 106, B. Schulze and H. Triebel (eds.), Teubner, Leipzig 1988, 287-296.
[00008] [9] W. Jurkat and G. Sampson, On rearrangement and weight inequalities for the Fourier transform, Indiana Univ. Math. J. 33 (1984), 257-270. | Zbl 0536.42013
[00009] [10] J. Lakey, Weighted norm inequalities for the Fourier transform, Ph.D. Thesis, University of Maryland, College Park, 1991.
[00010] [11] A. Makagon and V. Mandrekar, The spectral representation of stable processes: harmonizability and regularity, Probab. Theory Related Fields 85 (1990), 1-11. | Zbl 0673.60041
[00011] [12] B. Rajput and J. Rosinski, Spectral representations of infinitely divisible processes, ibid. 82 (1989), 451-487. | Zbl 0659.60078
[00012] [13] J. Rosinski, On stochastic integral representation of stable processes with sample paths in Banach spaces, J. Multivariate Anal. 20 (1986), 277-307. | Zbl 0606.60041
[00013] [14] G. Samorodnitsky and M. Taqqu, Stable Random Processes, book to appear.
[00014] [15] K. Urbanik, Prediction of strictly stationary sequences, Colloq. Math. 12 (1964), 115-129. | Zbl 0126.33502
[00015] [16] K. Urbanik, Some prediction problems for strictly stationary processes, in: Proc. 5th Berkeley Sympos. Math. Statist. Probab., Vol. 2, Part I, Univ. of California Press, 1967, 235-258. | Zbl 0226.60065
[00016] [17] K. Urbanik, Random measures and harmonizable sequences, Studia Math. 31 (1968), 61-88. | Zbl 0249.60014