On the uniform convergence and L¹-convergence of double Walsh-Fourier series
Móricz, Ferenc
Studia Mathematica, Tome 103 (1992), p. 225-237 / Harvested from The Polish Digital Mathematics Library

In 1970 C. W. Onneweer formulated a sufficient condition for a periodic W-continuous function to have a Walsh-Fourier series which converges uniformly to the function. In this paper we extend his results from single to double Walsh-Fourier series in a more general setting. We study the convergence of rectangular partial sums in Lp-norm for some 1 ≤ p ≤ ∞ over the unit square [0,1) × [0,1). In case p = ∞, by Lp we mean CW, the collection of uniformly W-continuous functions f(x, y), endowed with the supremum norm. As special cases, we obtain the extensions of the Dini-Lipschitz test and the Dirichlet-Jordan test for double Walsh-Fourier series.

Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:215925
@article{bwmeta1.element.bwnjournal-article-smv102i3p225bwm,
     author = {Ferenc M\'oricz},
     title = {On the uniform convergence and L$^1$-convergence of double Walsh-Fourier series},
     journal = {Studia Mathematica},
     volume = {103},
     year = {1992},
     pages = {225-237},
     zbl = {0810.41026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv102i3p225bwm}
}
Móricz, Ferenc. On the uniform convergence and L¹-convergence of double Walsh-Fourier series. Studia Mathematica, Tome 103 (1992) pp. 225-237. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv102i3p225bwm/

[00000] [1] N. J. Fine, On the Walsh functions, Trans. Amer. Math. Soc. 65 (1949), 372-414. | Zbl 0036.03604

[00001] [2] R. D. Getsadze, Convergence and divergence of multiple orthonormal Fourier series in C and L metrics, Soobshch. Akad. Nauk Gruzin. SSR 106 (1982), 489-491 (in Russian). | Zbl 0502.42006

[00002] [3] G. H. Hardy, On double Fourier series, Quart. J. Math. 37 (1906), 53-79. | Zbl 36.0501.02

[00003] [4] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge Univ. Press, 1934.

[00004] [5] E. W. Hobson, The Theory of Functions of a Real Variable and the Theory of Fourier's Series, Vol. 1, third edition, Cambridge Univ. Press, 1927; Dover, New York 1957. | Zbl 53.0226.01

[00005] [6] F. Móricz, Approximation by double Walsh polynomials, Internat. J. Math. Math. Sci., to appear. | Zbl 0817.42014

[00006] [7] C. W. Onneweer, On uniform convergence for Walsh-Fourier series, Pacific J. Math. 34 (1970), 117-122. | Zbl 0205.37602

[00007] [8] R. E. A. C. Paley, A remarkable series of orthogonal functions, Proc. London Math. Soc. 34 (1932), 241-279. | Zbl 0005.24901

[00008] [9] R. Salem, Essais sur les séries trigonométriques, Actualités Sci. Indust. 862, Hermann, Paris 1940. | Zbl 66.0280.01

[00009] [10] F. Schipp, W. R. Wade, and P. Simon, Walsh Series. An Introduction to Dyadic Harmonic Analysis, Akadémiai Kiadó, Budapest 1990.

[00010] [11] J. L. Walsh, A closed set of normal orthogonal functions, Amer. J. Math. 55 (1923), 5-24. | Zbl 49.0293.03

[00011] [12] L. C. Young, Sur une généralisation de la notion de variation de puissance p-ième bornée au sens de M. Wiener, et sur la convergence des séries de Fourier, C. R. Acad. Sci. Paris 204 (1937), 470-472. | Zbl 0016.10501

[00012] [13] A. Zygmund, Trigonometric Series, Vol. 1, Cambridge Univ. Press, 1959. | Zbl 0085.05601