Cellularity of free products of Boolean algebras (or topologies)
Shelah, Saharon
Fundamenta Mathematicae, Tome 163 (2000), p. 153-208 / Harvested from The Polish Digital Mathematics Library

The aim this paper is to present an answer to Problem 1 of Monk [10], [11]. We do this by proving in particular that if μ is a strong limit singular cardinal, θ=(2cf(μ))+ and 2μ=μ+ then there are Boolean algebras 𝔹1,𝔹2 such that c(𝔹1)=μ,c(𝔹2)<θbutc(𝔹1*𝔹2)=μ+. Further we improve this result, deal with the method and the necessity of the assumptions. In particular we prove that if 𝔹 is a ccc Boolean algebra and μωλ=cf(λ)2μ then 𝔹 satisfies the λ-Knaster condition (using the “revised GCH theorem”).

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:212474
@article{bwmeta1.element.bwnjournal-article-fmv166i1p153bwm,
     author = {Saharon Shelah},
     title = {Cellularity of free products of Boolean algebras (or topologies)},
     journal = {Fundamenta Mathematicae},
     volume = {163},
     year = {2000},
     pages = {153-208},
     zbl = {0967.54003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv166i1p153bwm}
}
Shelah, Saharon. Cellularity of free products of Boolean algebras (or topologies). Fundamenta Mathematicae, Tome 163 (2000) pp. 153-208. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv166i1p153bwm/

[00000] [1] M. Džamonja and S. Shelah, Universal graphs at successors of singular strong limits. | Zbl 1055.03030

[00001] [2] R. Engelking and M. Karłowicz, Some theorems of set theory and their topological consequences, Fund. Math. 57 (1965), 275-285. | Zbl 0137.41904

[00002] [3] M. Gitik and S. Shelah, On densities of free products, Topology Appl. 88 (1998), 219-238. | Zbl 0926.03060

[00003] [4] A. Hajnal, I. Juhász and S. Shelah, Splitting strongly almost disjoint families, Trans. Amer. Math. Soc. 295 (1986), 369-387. | Zbl 0619.03033

[00004] [5] A. Hajnal, I. Juhász and Z. Szentmiklóssy, On the structure of CCC partial orders, Algebra Universalis, to appear. | Zbl 0938.06001

[00005] [6] R. B. Jensen, The fine structure of the constructible hierarchy, Ann. Math. Logic 4 (1972), 229-308. | Zbl 0257.02035

[00006] [7] A. Kanamori and M. Magidor, The evolution of large cardinal axioms in set theory, in: Higher Set Theory, Lecture Notes in Math. 669, Springer, 1978, 99-275. | Zbl 0381.03038

[00007] [8] J. P. Levinski, M. Magidor and S. Shelah, Chang’s conjecture for ω, Israel J. Math. 69 (1990), 161-172.

[00008] [9] M. Magidor and S. Shelah, When does almost free imply free? (For groups, transversal etc.), J. Amer. Math. Soc. 7 (1994), 769-830. | Zbl 0819.20059

[00009] [10] D. Monk, Cardinal Invariants of Boolean Algebras, Lectures in Mathematics, ETH Zurich, Birkhäuser, Basel, 1990.

[00010] [11] D. Monk, Cardinal Invariants of Boolean Algebras, Progr. Math., Birkhäuser, Basel, 1996. | Zbl 0849.03038

[00011] [12] S. Shelah, Categoricity of an abstract elementary class in two successive cardinals, Israel J. Math. accepted;. math.LO/9805146. | Zbl 0999.03030

[00012] [13] S. Shelah, PCF and infinite free subsets, Arch. Math. Logic, accepted; math.LO/9807177.

[00013] [14] S. Shelah, Remarks on Boolean algebras, Algebra Universalis 11 (1980), 77-89. | Zbl 0451.06015

[00014] [15] S. Shelah, Simple unstable theories, Ann. Math. Logic 19 (1980), 177-203. | Zbl 0489.03008

[00015] [16] S. Shelah, On saturation for a predicate, Notre Dame J. Formal Logic 22 (1981), 239-248. | Zbl 0497.03022

[00016] [17] S. Shelah, Products of regular cardinals and cardinal invariants of products of Boolean algebras, Israel J. Math. 70 (1990), 129-187. | Zbl 0722.03038

[00017] [18] S. Shelah, Advances in Cardinal Arithmetic, in: Finite and Infinite Combinatorics in Sets and Logic, N. W. Sauer et al. (eds.), Kluwer, 1993, 355-383. | Zbl 0844.03028

[00018] [19] S. Shelah, More on cardinal arithmetic, Arch. Math. Logic 32 (1993), 399-428. | Zbl 0799.03052

[00019] [20] S. Shelah, ω+1 has a Jonsson algebra, Chapter II of [20].

[00020] [21] S. Shelah, Basic: Cofinalities of small reduced products, Chapter I of [20].

[00021] [22] S. Shelah, Cardinal Arithmetic, Oxford Logic Guides 29, Oxford Univ. Press, 1994.

[00022] [23] S. Shelah, Further cardinal arithmetic, Israel J. Math. 95 (1996), 61-114; math. LO/9610226. | Zbl 0864.03032

[00023] [24] S. Shelah, Colouring and non-productivity of 2-cc, Ann. Pure Appl. Logic 84 (1997), 153-174; math.LO/9609218.

[00024] [25] S. Shelah, The Generalized Continuum Hypothesis revisited, Israel J. Math. 116 (2000), 285-321; math.LO/9809200. | Zbl 0955.03054

[00025] [26] R. M.Solovay, Strongly compact cardinals and the GCH, in: Proc. Tarski Symposium (Berkeley, 1971), Proc. Sympos. Pure Math. 25, Amer. Math. Soc., 1974, 365-372.