Dichotomies pour les espaces de suites réelles
Casevitz, Pierre
Fundamenta Mathematicae, Tome 163 (2000), p. 249-284 / Harvested from The Polish Digital Mathematics Library

There is a general conjecture, the dichotomy (C) about Borel equivalence relations E: (i) E is Borel reducible to the equivalence relation EGX where X is a Polish space, and a Polish group acting continuously on X; or (ii) a canonical relation E1 is Borel reducible to E. (C) is only proved for special cases as in [So].  In this paper we make a contribution to the study of (C): a stronger conjecture is true for hereditary subspaces of the Polish space ω of real sequences, i.e., subspaces such that [y=(yn)nX and ∀n, |xn||yn|]x=(xn)nX. If such an X is analytic as a subset of ω, then either X is Polishable as a vector subspace, or X admits a subspace strongly isomorphic to the space c00 of finite sequences, or to the space of bounded sequences.  When X is Polishable, the metrics have a very simple form as in the case studied in [So], which allows us to study precisely the properties of those X’s

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:212469
@article{bwmeta1.element.bwnjournal-article-fmv165i3p249bwm,
     author = {Pierre Casevitz},
     title = {Dichotomies pour les espaces de suites r\'eelles},
     journal = {Fundamenta Mathematicae},
     volume = {163},
     year = {2000},
     pages = {249-284},
     zbl = {0959.03032},
     language = {fra},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv165i3p249bwm}
}
Casevitz, Pierre. Dichotomies pour les espaces de suites réelles. Fundamenta Mathematicae, Tome 163 (2000) pp. 249-284. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv165i3p249bwm/

[00000] [C] P. Casevitz, Espaces héréditaires complètement métrisables, Fund. Math., à paraître.

[00001] [K] A. Kechris, Classical Descriptive Set Theory, Springer, New York, 1995. | Zbl 0819.04002

[00002] [K-L] A. S. Kechris and A. Louveau, The classification of hypersmooth Borel equivalence relations, J. Amer. Math. Soc. 10 (1997), 215-242. | Zbl 0865.03039

[00003] [K-L-W] A. S. Kechris, A. Louveau and W. H. Woodin, The structure of σ-ideals of compact sets, Trans. Amer. Math. Soc. 301 (1987), 263-288. | Zbl 0633.03043

[00004] [M] Y. N. Moschovakis, Descriptive Set Theory, North-Holland, Amsterdam, 1980.

[00005] [Sc] H. H. Schaefer, Banach Lattices and Positive Operators, Springer, New York, 1974. | Zbl 0296.47023

[00006] [So] S. Solecki, Analytic ideals and their applications, Ann. Pure Appl. Logic 99 (1999), 51-72. | Zbl 0932.03060

[00007] [T] M. Talagrand, Compacts de fonctions mesurables et filtres non mesurables, Studia Math. 67 (1980), 13-43. | Zbl 0435.46023