There is a general conjecture, the dichotomy (C) about Borel equivalence relations E: (i) E is Borel reducible to the equivalence relation where X is a Polish space, and a Polish group acting continuously on X; or (ii) a canonical relation is Borel reducible to E. (C) is only proved for special cases as in [So]. In this paper we make a contribution to the study of (C): a stronger conjecture is true for hereditary subspaces of the Polish space of real sequences, i.e., subspaces such that and ∀n, . If such an X is analytic as a subset of , then either X is Polishable as a vector subspace, or X admits a subspace strongly isomorphic to the space of finite sequences, or to the space of bounded sequences. When X is Polishable, the metrics have a very simple form as in the case studied in [So], which allows us to study precisely the properties of those X’s
@article{bwmeta1.element.bwnjournal-article-fmv165i3p249bwm, author = {Pierre Casevitz}, title = {Dichotomies pour les espaces de suites r\'eelles}, journal = {Fundamenta Mathematicae}, volume = {163}, year = {2000}, pages = {249-284}, zbl = {0959.03032}, language = {fra}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv165i3p249bwm} }
Casevitz, Pierre. Dichotomies pour les espaces de suites réelles. Fundamenta Mathematicae, Tome 163 (2000) pp. 249-284. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv165i3p249bwm/
[00000] [C] P. Casevitz, Espaces héréditaires complètement métrisables, Fund. Math., à paraître.
[00001] [K] A. Kechris, Classical Descriptive Set Theory, Springer, New York, 1995. | Zbl 0819.04002
[00002] [K-L] A. S. Kechris and A. Louveau, The classification of hypersmooth Borel equivalence relations, J. Amer. Math. Soc. 10 (1997), 215-242. | Zbl 0865.03039
[00003] [K-L-W] A. S. Kechris, A. Louveau and W. H. Woodin, The structure of σ-ideals of compact sets, Trans. Amer. Math. Soc. 301 (1987), 263-288. | Zbl 0633.03043
[00004] [M] Y. N. Moschovakis, Descriptive Set Theory, North-Holland, Amsterdam, 1980.
[00005] [Sc] H. H. Schaefer, Banach Lattices and Positive Operators, Springer, New York, 1974. | Zbl 0296.47023
[00006] [So] S. Solecki, Analytic ideals and their applications, Ann. Pure Appl. Logic 99 (1999), 51-72. | Zbl 0932.03060
[00007] [T] M. Talagrand, Compacts de fonctions mesurables et filtres non mesurables, Studia Math. 67 (1980), 13-43. | Zbl 0435.46023