Countable partitions of the sets of points and lines
Schmerl, James
Fundamenta Mathematicae, Tome 159 (1999), p. 183-196 / Harvested from The Polish Digital Mathematics Library

The following theorem is proved, answering a question raised by Davies in 1963. If L0L1L2... is a partition of the set of lines of n, then there is a partition n=S0S1S2... such that |Si|2 whenever Li. There are generalizations to some other, higher-dimensional subspaces, improving recent results of Erdős, Jackson Mauldin.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:212387
@article{bwmeta1.element.bwnjournal-article-fmv160i2p183bwm,
     author = {James Schmerl},
     title = {Countable partitions of the sets of points and lines},
     journal = {Fundamenta Mathematicae},
     volume = {159},
     year = {1999},
     pages = {183-196},
     zbl = {0940.03058},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv160i2p183bwm}
}
Schmerl, James. Countable partitions of the sets of points and lines. Fundamenta Mathematicae, Tome 159 (1999) pp. 183-196. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv160i2p183bwm/

[00000] [1] R. O. Davies, On a problem of Erdős concerning decompositions of the plane, Proc. Cambridge Philos. Soc. 59 (1963), 33-36. | Zbl 0121.25702

[00001] [2] R. O. Davies, On a denumerable partition problem of Erdős, ibid., 501-502. | Zbl 0121.01602

[00002] [3] P. Erdős, Some remarks on set theory IV, Michigan Math. J. 2 (1953-54), 169-173.

[00003] [4] P. Erdős, S. Jackson and R. D. Mauldin, On partitions of lines and space, Fund. Math. 145 (1994), 101-119. | Zbl 0809.04004

[00004] [5] P. Erdős, S. Jackson and R. D. Mauldin, On infinite partitions of lines and space, ibid. 152 (1997), 75-95. | Zbl 0883.03031

[00005] [6] J. H. Schmerl, Countable partitions of Euclidean space, Math. Proc. Cambridge Philos. Soc. 120 (1996), 7-12. | Zbl 0887.51013

[00006] [7] W. Sierpiński, Sur un théorème équivalent à l’hypothèse du continu (20=1), Bull. Internat. Acad. Polon. Sci. Lett. Cl. Sci. Math. Nat. Sér. A Sci. Math. 1919, 1-3.

[00007] [8] J. C. Simms, Sierpiński's Theorem, Simon Stevin 65 (1991), 69-163. | Zbl 0726.01013