The concept of boundedness and the Bohr compactification of a MAP Abelian group
Galindo, Jorge ; Hernández, Salvador
Fundamenta Mathematicae, Tome 159 (1999), p. 195-218 / Harvested from The Polish Digital Mathematics Library

Let G be a maximally almost periodic (MAP) Abelian group and let ℬ be a boundedness on G in the sense of Vilenkin. We study the relations between ℬ and the Bohr topology of G for some well known groups with boundedness (G,ℬ). As an application, we prove that the Bohr topology of a topological group which is topologically isomorphic to the direct product of a locally convex space and an -group, contains “many” discrete C-embedded subsets which are C*-embedded in their Bohr compactification. This result generalizes an analogous theorem of van Douwen for the discrete case and some other ones due to Hartman and Ryll-Nardzewski concerning the existence of I0-sets.  We also obtain some results on preservation of compactness for the Bohr topology of several types of MAP Abelian groups, like -groups, locally convex vector spaces and free Abelian topological groups.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:212329
@article{bwmeta1.element.bwnjournal-article-fmv159i3p195bwm,
     author = {Jorge Galindo and Salvador Hern\'andez},
     title = {The concept of boundedness and the Bohr compactification of a MAP Abelian group},
     journal = {Fundamenta Mathematicae},
     volume = {159},
     year = {1999},
     pages = {195-218},
     zbl = {0934.22008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv159i3p195bwm}
}
Galindo, Jorge; Hernández, Salvador. The concept of boundedness and the Bohr compactification of a MAP Abelian group. Fundamenta Mathematicae, Tome 159 (1999) pp. 195-218. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv159i3p195bwm/

[00000] [1] W. Banaszczyk, Additive Subgroups of Topological Vector Spaces, Lecture Notes in Math. 1466, Springer, Berlin, 1991. | Zbl 0743.46002

[00001] [2] W. Banaszczyk and E. Martín-Peinador, The Glicksberg Theorem on weakly compact sets for nuclear groups, Ann. New York Acad. Sci. 788 (1996), 34-39. | Zbl 0935.22003

[00002] [3] W. W. Comfort, S. Hernández and F. J. Trigos-Arrieta, Relating a locally compact Abelian group to its Bohr compactification, Adv. Math. 120 (1996), 322-344. | Zbl 0863.22004

[00003] [4] W. W. Comfort and K. A. Ross, Topologies induced by groups of characters, Fund. Math. 55 (1964), 283-291. | Zbl 0138.02905

[00004] [5] W. W. Comfort, F. J. Trigos-Arrieta, and T.-S. Wu, The Bohr compactification, modulo a metrizable subgroup, Fund. Math. 143 (1993), 119-136. | Zbl 0812.22001

[00005] [6] E. K. van Douwen, The maximal totally bounded group topology on G and the biggest minimal G-space, for Abelian groups G, Topology Appl. 34 (1990), 69-91. | Zbl 0696.22003

[00006] [7] J. Galindo, Acotaciones y topologías débiles sobre grupos abelianos maximalmente casi periódicos, Ph.D. Thesis, Universidad Jaume I, Castellón, 1997.

[00007] [8] J. Galindo and S. Hernández, On a theorem of van Douwen, preprint, 1998. | Zbl 0961.22001

[00008] [9] L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, New York, 1960. | Zbl 0093.30001

[00009] [10] I. Glicksberg, Uniform boundedness for groups, Canad. J. Math. 14 (1962), 269-276. | Zbl 0109.02001

[00010] [11] S. Hartman and C. Ryll-Nardzewski, Almost periodic extensions of functions, Colloq. Math. 12 (1964), 29-39. | Zbl 0145.32101

[00011] [12] S. Hartman and C. Ryll-Nardzewski, Almost periodic extensions of functions II, ibid. 15 (1966), 79-86. | Zbl 0145.32102

[00012] [13] J. Hejcman, Boundedness in uniform spaces and topological groups, Czechoslovak Math. J. 9 (1962), 544-562. | Zbl 0132.18202

[00013] [14] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. I, Grundlehren Math. Wiss. 115, Springer, Berlin, 1963.

[00014] [15] R. Hughes, Compactness in locally compact groups, Bull. Amer. Math. Soc. 79 (1973), 122-123. | Zbl 0263.22006

[00015] [16] G. Köthe, Topological Vector Spaces, Vol. I, Grundlehren Math. Wiss. 159, Springer, Berlin, 1969. | Zbl 0179.17001

[00016] [17] A. G. Leiderman, S. A. Morris and V. G. Pestov, The free abelian topological group and the free locally convex space on the unit interval, J. London Math. Soc. 56 (1997), 529-538. | Zbl 0907.22002

[00017] [18] M. Moskowitz, Uniform boundedness for non-abelian groups, Math. Proc. Cambridge Philos. Soc. 97 (1985), 107-110. | Zbl 0576.22009

[00018] [19] N. Noble, k-groups and duality, Trans. Amer. Math. Soc. 151 (1970), 551-561. | Zbl 0229.22012

[00019] [20] V. Pestov, Free Abelian topological groups and the Pontryagin-van Kampen duality, Bull. Austral. Math. Soc. 52 (1995), 297-311. | Zbl 0841.22001

[00020] [21] D. Remus and F. J. Trigos-Arrieta, Abelian groups which satisfy Pontryagin duality need not respect compactness, Proc. Amer. Math. Soc. 117 (1993), 1195-1200. | Zbl 0826.22002

[00021] [22] C. Ryll-Nardzewski, Concerning almost periodic extensions of functions, Colloq. Math. 12 (1964), 235-237.

[00022] [23] L. J. Sulley, On countable inductive limits of locally compact abelian groups, J. London Math. Soc. (2) 5 (1972), 629-637. | Zbl 0243.22002

[00023] [24] M. Tkachenko, Completeness of free Abelian topological groups, Dokl. Akad. Nauk SSSR 269 (1983), 299-303 (in Russian); English transl.: Soviet Math. Dokl. 27 (1983), 341-345.

[00024] [25] F. J. Trigos-Arrieta, Continuity, boundedness, connectedness and the Lindelöf property for topological groups, J. Pure Appl. Algebra 70 (1991), 199-210.

[00025] [26] V. V. Uspenskiĭ, On the topology of a free locally convex space, Dokl. Akad. Nauk SSSR 270 (1983), 1334-1337 (in Russian); English transl.: Soviet Math. Dokl. 27 (1983), 781-785.

[00026] [27] V. V. Uspenskiĭ, Free topological groups of metrizable spaces, Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), 1295-1319 (in Russian); English transl.: Math. USSR-Izv. 37 (1991), 657-680.

[00027] [28] M. Valdivia, The space of distributions D’ is not Br-complete, Math. Ann. 211 (1974), 145-149. | Zbl 0288.46033

[00028] [29] M. Valdivia, The space D(Ω) is not Br-complete, Ann. Inst. Fourier (Grenoble) 27 (1977), no. 4, 29-43. | Zbl 0361.46005

[00029] [30] N. Varopoulos, Studies in harmonic analysis, Proc. Cambridge Philos. Soc. 60 (1964), 465-516. | Zbl 0161.11103

[00030] [31] R. Venkataraman, Characterization, structure and analysis on abelian groups, Monatsh. Math. 100 (1985), 47-66.

[00031] [32] N. Ya. Vilenkin, Theory of characters of topological Abelian groups with a given boundedness, Izv. Akad. Nauk SSSR Ser. Mat. 15 (1951), 439-462 (in Russian).