On products of Radon measures
Gryllakis, C. ; Grekas, S.
Fundamenta Mathematicae, Tome 159 (1999), p. 71-84 / Harvested from The Polish Digital Mathematics Library

Let X=[0,1]Γ with card Γ ≥ c (c denotes the continuum). We construct two Radon measures μ,ν on X such that there exist open subsets of X × X which are not measurable for the simple outer product measure. Moreover, these measures are strikingly similar to the Lebesgue product measure: for every finite F ⊆ Γ, the projections of μ and ν onto [0,1]F are equivalent to the F-dimensional Lebesgue measure. We generalize this construction to any compact group of weight ≥ c, by replacing the Lebesgue product measure with the Haar measure.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:212320
@article{bwmeta1.element.bwnjournal-article-fmv159i1p71bwm,
     author = {C. Gryllakis and S. Grekas},
     title = {On products of Radon measures},
     journal = {Fundamenta Mathematicae},
     volume = {159},
     year = {1999},
     pages = {71-84},
     zbl = {0936.28007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv159i1p71bwm}
}
Gryllakis, C.; Grekas, S. On products of Radon measures. Fundamenta Mathematicae, Tome 159 (1999) pp. 71-84. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv159i1p71bwm/

[00000] [B-F] B. Balcar and F. Franek, Independent families in complete Boolean algebras, Trans. Amer. Math. Soc. 274 (1982), 607-618. | Zbl 0527.06008

[00001] [Bo] N. Bourbaki, Intégration, Ch. 8, Hermann, Paris, 1959-1967.

[00002] [C] J. R. Choksi, Recent developments arising out of Kakutani's work on completion regularity of measures, in: Contemp. Math. 26, Amer. Math. Soc., Providence, R.I., 1984, 81-94. | Zbl 0538.28008

[00003] [E] B. A. Efimov, Mappings and embeddings of dyadic spaces, Mat. Sb. 103 (1977), 52-68 (in Russian).

[00004] [Er-Ox] P. Erdős and J. C. Oxtoby, Partitions of the plane into sets having positive measure in every non-null measurable product set, Trans. Amer. Math. Soc. 79 (1955), 91-102. | Zbl 0066.29801

[00005] [Fr₁] D. H. Fremlin, Products of Radon measures: a counter-example, Canad. Math. Bull. 19 (1976), 285-289. | Zbl 0353.28005

[00006] [Fr₂] D. H. Fremlin, Measure Theory, University of Essex, Colchester, 1994.

[00007] [Fr-Gr] D. H. Fremlin and S. Grekas, Products of completion regular measures, Fund. Math. 147 (1995), 27-37. | Zbl 0843.28005

[00008] [Gr₁] S. Grekas, Structural properties of compact groups with measure-theoretic applications, Israel J. Math. 87 (1994), 89-95. | Zbl 0831.28007

[00009] [Gr₂] S. Grekas, Measure-theoretic problems in topological dynamics, J. Anal. Math. 65 (1995), 207-220. | Zbl 0870.28009

[00010] [Gr-Me] S. Grekas and S. Mercourakis, On the measure theoretic structure of compact groups, Trans. Amer. Math. Soc. 350 (1998), 2779-2796. | Zbl 0912.43001

[00011] [Gry] C. Gryllakis, Products of completion regular measures, Proc. Amer. Math. Soc. 103 (1988), 563-568. | Zbl 0655.28005

[00012] [H] R. Haydon, On Banach spaces which contain l1(τ) and types of measures on compact spaces, Israel J. Math. 28 (1977), 313-324. | Zbl 0365.46020

[00013] [He-Ro] E. Hewitt and K. Ross, Abstract Harmonic Analysis I, Springer, Berlin, 1963.

[00014] [K] V. Kuz'minov, On a hypothesis of P. S. Aleksandrov in the theory of topological groups, Dokl. Akad. Nauk SSSR 125 (1959), 727-729 (in Russian).

[00015] [Mo-Zi] D. Montgomery and L. Zippin, Topological Transformation Groups, Interscience, 1955.

[00016] [Mos] P. S. Mostert, Sections in principal fibre spaces, Duke Math. J. 23 (1956), 57-71. | Zbl 0072.18102

[00017] [P] A. Pełczyński, Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions, Dissertationes Math. 58 (1968). | Zbl 0165.14603

[00018] [Pr] J. F. Price, Lie Groups and Compact Groups, Cambridge Univ. Press, 1977.

[00019] [T₁] M. Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. 307 (1984). | Zbl 0582.46049

[00020] DUPA[T₂] M. Talagrand, On liftings and the regularization of stochastic processes, Probab. Theory Related Fields 78 (1988), 127-134. | Zbl 0627.60046

[00021] [U] V. V. Uspenskiĭ, Why compact groups are dyadic, in: General Topology and its Relations to Modern Analysis and Algebra VI, Proc. Sixth Prague Topological Symposium 1986, Z. Frolík (ed.), Heldermann, Berlin, 1988, 601-610.