Hyperconvexity of ℝ-trees
Kirk, W.
Fundamenta Mathematicae, Tome 158 (1998), p. 67-72 / Harvested from The Polish Digital Mathematics Library

It is shown that for a metric space (M,d) the following are equivalent: (i) M is a complete ℝ-tree; (ii) M is hyperconvex and has unique metric segments.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:212261
@article{bwmeta1.element.bwnjournal-article-fmv156i1p67bwm,
     author = {W. Kirk},
     title = {Hyperconvexity of $\mathbb{R}$-trees},
     journal = {Fundamenta Mathematicae},
     volume = {158},
     year = {1998},
     pages = {67-72},
     zbl = {0913.54030},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv156i1p67bwm}
}
Kirk, W. Hyperconvexity of ℝ-trees. Fundamenta Mathematicae, Tome 158 (1998) pp. 67-72. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv156i1p67bwm/

[00000] [1] N. Aronszajn and P. Panitchpakdi, Extensions of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6 (1956), 405-439. | Zbl 0074.17802

[00001] [2] J. B. Baillon, Nonexpansive mappings and hyperconvex spaces, in: Fixed Point Theory and its Applications, R. F. Brown (ed.), Contemp. Math. 72, Amer. Math. Soc., Providence, R.I., 1988, 11-19.

[00002] [3] L. M. Blumenthal, Distance Geometry, Oxford Univ. Press, London, 1953.

[00003] [4] J. R. Isbell, Six theorems about injective metric spaces, Comment. Math. Helv. 39 (1964), 439-447. | Zbl 0151.30205

[00004] [5] E. Jawhari, D. Misane and M. Pouzet, Retracts: graphs and ordered sets from the metric point of view, in: Combinatorics and Ordered Graphs, I. Rival (ed.), Contemp. Math. 57, Amer. Math. Soc., Providence, R.I., 1986, 175-226. | Zbl 0597.54028

[00005] [6] M. A. Khamsi, On metric spaces with uniform normal structure, Proc. Amer. Math. Soc. 106 (1989), 723-726. | Zbl 0671.47052

[00006] [7] M. A. Khamsi, KKM and Ky Fan theorems in hyperconvex metric spaces, J. Math. Anal. Appl. 204 (1996), 298-306. | Zbl 0869.54045

[00007] [8] W. A. Kirk and S. S. Shin, Fixed point theorems in hyperconvex spaces, Houston J. Math. 23 (1997), 175-188. | Zbl 0957.46033

[00008] [9] J. Kulesza and T. C. Lim, On weak compactness and countable weak compactness in fixed point theory, Proc. Amer. Math. Soc. 124 (1996), 3345-3349. | Zbl 0865.47044

[00009] [10] H. E. Lacey, The Isometric Theory of Classical Banach Spaces, Springer, Berlin, 1974. | Zbl 0285.46024

[00010] [11] R. Mańka, Association and fixed points, Fund. Math. 91 (1976), 105-121. | Zbl 0335.54037

[00011] [12] J. W. Morgan, Λ-trees and their applications, Bull. Amer. Math. Soc. 26 (1992), 87-112. | Zbl 0767.05054

[00012] [13] F. Rimlinger, Free actions on ℝ-trees, Trans. Amer. Math. Soc. 332 (1992), 313-329. | Zbl 0803.20017

[00013] [14] R. Sine, On nonlinear contractions in sup norm spaces, Nonlinear Anal. 3 (1979), 885-890. | Zbl 0423.47035

[00014] [15] P. Soardi, Existence of fixed points of nonexpansive mappings in certain Banach lattices, Proc. Amer. Math. Soc. 73 (1979), 25-29. | Zbl 0371.47048

[00015] [16] F. Sullivan, Ordering and completeness of metric spaces, Nieuw Arch. Wisk. (3) 29 (1981), 178-193. | Zbl 0484.54024

[00016] [17] J. Tits, A "Theorem of Lie-Kolchin" for trees, in: Contributions to Algebra: a Collection of Papers Dedicated to Ellis Kolchin, Academic Press, New York, 1977, 377-388.