For almost every tent map, the turning point is typical
Bruin, Henk
Fundamenta Mathematicae, Tome 158 (1998), p. 215-235 / Harvested from The Polish Digital Mathematics Library

Let Ta be the tent map with slope a. Let c be its turning point, and μa the absolutely continuous invariant probability measure. For an arbitrary, bounded, almost everywhere continuous function g, it is shown that for almost every a, ʃgdμa=limn1ni=0n-1g(Tai(c)). As a corollary, we deduce that the critical point of a quadratic map is generically not typical for its absolutely continuous invariant probability measure, if it exists.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:212253
@article{bwmeta1.element.bwnjournal-article-fmv155i3p215bwm,
     author = {Henk Bruin},
     title = {For almost every tent map, the turning point is typical},
     journal = {Fundamenta Mathematicae},
     volume = {158},
     year = {1998},
     pages = {215-235},
     zbl = {0962.37015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv155i3p215bwm}
}
Bruin, Henk. For almost every tent map, the turning point is typical. Fundamenta Mathematicae, Tome 158 (1998) pp. 215-235. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv155i3p215bwm/

[00000] [BC] M. Benedicks and L. Carleson, On iterations of 1-ax2 on (-1,1), Ann. of Math. (2) 122 (1985), 1-25. | Zbl 0597.58016

[00001] [BGMY] L. Block, J. Guckenheimer, M. Misiurewicz and L.-S. Young, Periodic points and topological entropy of one dimensional maps, in: Lecture Notes in Math. 819, Springer, 1980, 18-34.

[00002] [BM] K. Brucks and M. Misiurewicz, Trajectory of the turning point is dense for almost all tent maps, Ergodic Theory Dynam. Systems 16 (1996), 1173-1183. | Zbl 0874.58014

[00003] [B] H. Bruin, Induced maps, Markov extensions and invariant measures in one-dimensional dynamics, Comm. Math. Phys. 168 (1995), 571-580. | Zbl 0827.58015

[00004] [B2] H. Bruin, Combinatorics of the kneading map, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 5 (1995), 1339-1349. | Zbl 0886.58023

[00005] [DGP] B. Derrida, A. Gervois and Y. Pomeau, Iteration of endomorphisms on the real axis and representations of numbers, Ann. Inst. H. Poincaré Phys. Théor. 29 (1978), 305-356. | Zbl 0416.28012

[00006] [H] F. Hofbauer, The topological entropy of the transformation x ↦ ax(1-x), Monatsh. Math. 90 (1980), 117-141. | Zbl 0433.54009

[00007] [K] G. Keller, Lifting measures to Markov extensions, ibid. 108 (1989), 183-200. | Zbl 0712.28008

[00008] [MS] W. de Melo and S. van Strien, One-Dimensional Dynamics, Ergeb. Math. Grenzgeb. (3) 25, Springer, Berlin, 1993.

[00009] [M] M. Misiurewicz, Absolutely continuous measures for certain maps of an interval, Inst. Hautes Études Sci. Publ. Math. 53 (1981), 17-51. | Zbl 0477.58020

[00010] [P] K. R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York, 1967. | Zbl 0153.19101

[00011] [Sa] D. Sands, Topological conditions for positive Lyapunov exponents in unimodal maps, Ph.D. thesis, Cambridge, 1994.

[00012] [Sc] J. Schmeling, Symbolic dynamics for β-shifts and self-normal numbers, Ergodic Theory Dynam. Systems 17 (1997), 675-694. | Zbl 0908.58017

[00013] [T] H. Thunberg, Absolutely continuous invariant measures and superstable periodic orbits: weak*-convergence of natural measures, Ph.D. thesis, Stockholm, 1996.