Let be the tent map with slope a. Let c be its turning point, and the absolutely continuous invariant probability measure. For an arbitrary, bounded, almost everywhere continuous function g, it is shown that for almost every a, . As a corollary, we deduce that the critical point of a quadratic map is generically not typical for its absolutely continuous invariant probability measure, if it exists.
@article{bwmeta1.element.bwnjournal-article-fmv155i3p215bwm, author = {Henk Bruin}, title = {For almost every tent map, the turning point is typical}, journal = {Fundamenta Mathematicae}, volume = {158}, year = {1998}, pages = {215-235}, zbl = {0962.37015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv155i3p215bwm} }
Bruin, Henk. For almost every tent map, the turning point is typical. Fundamenta Mathematicae, Tome 158 (1998) pp. 215-235. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv155i3p215bwm/
[00000] [BC] M. Benedicks and L. Carleson, On iterations of on (-1,1), Ann. of Math. (2) 122 (1985), 1-25. | Zbl 0597.58016
[00001] [BGMY] L. Block, J. Guckenheimer, M. Misiurewicz and L.-S. Young, Periodic points and topological entropy of one dimensional maps, in: Lecture Notes in Math. 819, Springer, 1980, 18-34.
[00002] [BM] K. Brucks and M. Misiurewicz, Trajectory of the turning point is dense for almost all tent maps, Ergodic Theory Dynam. Systems 16 (1996), 1173-1183. | Zbl 0874.58014
[00003] [B] H. Bruin, Induced maps, Markov extensions and invariant measures in one-dimensional dynamics, Comm. Math. Phys. 168 (1995), 571-580. | Zbl 0827.58015
[00004] [B2] H. Bruin, Combinatorics of the kneading map, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 5 (1995), 1339-1349. | Zbl 0886.58023
[00005] [DGP] B. Derrida, A. Gervois and Y. Pomeau, Iteration of endomorphisms on the real axis and representations of numbers, Ann. Inst. H. Poincaré Phys. Théor. 29 (1978), 305-356. | Zbl 0416.28012
[00006] [H] F. Hofbauer, The topological entropy of the transformation x ↦ ax(1-x), Monatsh. Math. 90 (1980), 117-141. | Zbl 0433.54009
[00007] [K] G. Keller, Lifting measures to Markov extensions, ibid. 108 (1989), 183-200. | Zbl 0712.28008
[00008] [MS] W. de Melo and S. van Strien, One-Dimensional Dynamics, Ergeb. Math. Grenzgeb. (3) 25, Springer, Berlin, 1993.
[00009] [M] M. Misiurewicz, Absolutely continuous measures for certain maps of an interval, Inst. Hautes Études Sci. Publ. Math. 53 (1981), 17-51. | Zbl 0477.58020
[00010] [P] K. R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York, 1967. | Zbl 0153.19101
[00011] [Sa] D. Sands, Topological conditions for positive Lyapunov exponents in unimodal maps, Ph.D. thesis, Cambridge, 1994.
[00012] [Sc] J. Schmeling, Symbolic dynamics for β-shifts and self-normal numbers, Ergodic Theory Dynam. Systems 17 (1997), 675-694. | Zbl 0908.58017
[00013] [T] H. Thunberg, Absolutely continuous invariant measures and superstable periodic orbits: weak*-convergence of natural measures, Ph.D. thesis, Stockholm, 1996.