Ramsey, Lebesgue, and Marczewski sets and the Baire property
Reardon, Patrick
Fundamenta Mathematicae, Tome 149 (1996), p. 191-203 / Harvested from The Polish Digital Mathematics Library

We investigate the completely Ramsey, Lebesgue, and Marczewski σ-algebras and their relations to the Baire property in the Ellentuck and density topologies. Two theorems concerning the Marczewski σ-algebra (s) are presented.  THEOREM. In the density topology D, (s) coincides with the σ-algebra of Lebesgue measurable sets.  THEOREM. In the Ellentuck topology on [ω]ω, (s)0 is a proper subset of the hereditary ideal associated with (s).  We construct an example in the Ellentuck topology of a set which is first category and measure 0 but which is not Br-measurable. In addition, several theorems concerning perfect sets in the Ellentuck topology are presented. In particular, it is shown that there exist countable perfect sets in the Ellentuck topology.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:212118
@article{bwmeta1.element.bwnjournal-article-fmv149i3p191bwm,
     author = {Patrick Reardon},
     title = {Ramsey, Lebesgue, and Marczewski sets and the Baire property},
     journal = {Fundamenta Mathematicae},
     volume = {149},
     year = {1996},
     pages = {191-203},
     zbl = {0846.28002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv149i3p191bwm}
}
Reardon, Patrick. Ramsey, Lebesgue, and Marczewski sets and the Baire property. Fundamenta Mathematicae, Tome 149 (1996) pp. 191-203. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv149i3p191bwm/

[00000] [Br] J. B. Brown, The Ramsey sets and related sigma algebras and ideals, Fund. Math. 136 (1990), 179-185. | Zbl 0737.28004

[00001] [BrCo]J. B. Brown and G. V. Cox, Classical theory of totally imperfect spaces, Real Anal. Exchange 7 (1982), 1-39.

[00002] [Bu] C. Burstin, Eigenschaften messbaren und nichtmessbaren Mengen, Wien Ber. 123 (1914), 1525-1551.

[00003] [C] P. Corazza, Ramsey sets, the Ramsey ideal, and other classes over ℝ, J. Symbolic Logic 57 (1992), 1441-1468. | Zbl 0765.03021

[00004] [E] E. Ellentuck, A new proof that analytic sets are Ramsey, ibid. 39 (1974), 163-165. | Zbl 0292.02054

[00005] [GP] F. Galvin and K. Prikry, Borel sets and Ramsey's theorem, ibid. 38 (1973), 193-198. | Zbl 0276.04003

[00006] [GW] C. Goffman and D. Waterman, Approximately continuous transformations, Proc. Amer. Math. Soc. 12 (1961), 116-121. | Zbl 0096.17103

[00007] [GNN] C. Goffman, C. Neugebauer and T. Nishiura, Density topology and approximate continuity, Duke Math. J. 28 (1961), 497-505. | Zbl 0101.15502

[00008] [K] K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.

[00009] [L] A. Louveau, Une démonstration topologique de théorèmes de Silver et Mathias, Bull. Sci. Math. (2) 98 (1974), 97-102. | Zbl 0311.54043

[00010] [M] E. Marczewski (Szpilrajn), Sur une classe de fonctions de M. Sierpiński et la classe correspondante d'ensembles, Fund. Math. 24 (1935), 17-34. | Zbl 61.0229.01

[00011] [O] J. C. Oxtoby, Measure and Category, Springer, Amsterdam, 1971. | Zbl 0217.09201

[00012] [P] S. Plewik, On completely Ramsey sets, Fund. Math. 127 (1986), 127-132. | Zbl 0632.04005

[00013] [Sc] S. Scheinberg, Topologies which generate a complete measure algebra, Adv. in Math. 7 (1971), 231-239. | Zbl 0227.28009

[00014] [Si] J. Silver, Every analytic set is Ramsey, J. Symbolic Logic 35 (1970), 60-64. | Zbl 0216.01304

[00015] [T] F. Tall, The density topology, Pacific J. Math. 62 (1976), 275-284. | Zbl 0305.54039

[00016] [W] J. T. Walsh, Marczewski sets, measure, and the Baire property. II, Proc. Amer. Math. Soc. 106 (4) (1989), 1027-1030. | Zbl 0671.28002