Composants of the horseshoe
Bandt, Christoph
Fundamenta Mathematicae, Tome 144 (1994), p. 231-241 / Harvested from The Polish Digital Mathematics Library

The horseshoe or bucket handle continuum, defined as the inverse limit of the tent map, is one of the standard examples in continua theory as well as in dynamical systems. It is not arcwise connected. Its arcwise components coincide with composants, and with unstable manifolds in the dynamical setting. Knaster asked whether these composants are all homeomorphic, with the obvious exception of the zero composant. Partial results were obtained by Bellamy (1979), Dębski and Tymchatyn (1987), and Aarts and Fokkink (1991). We answer Knaster's question in the affirmative. The main tool is a very simple type of symbolic dynamics for the horseshoe and related continua.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:212026
@article{bwmeta1.element.bwnjournal-article-fmv144i3p231bwm,
     author = {Christoph Bandt},
     title = {Composants of the horseshoe},
     journal = {Fundamenta Mathematicae},
     volume = {144},
     year = {1994},
     pages = {231-241},
     zbl = {0818.54028},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv144i3p231bwm}
}
Bandt, Christoph. Composants of the horseshoe. Fundamenta Mathematicae, Tome 144 (1994) pp. 231-241. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv144i3p231bwm/

[00000] [1] J. M. Aarts and R. J. Fokkink, On composants of the bucket handle, Fund. Math. 139 (1991), 193-208. | Zbl 0759.54017

[00001] [2] C. Bandt and K. Keller, A simple approach to the topological structure of fractals, Math. Nachr. 154 (1991), 27-39. | Zbl 0824.28007

[00002] [3] C. Bandt and T. Retta, Topological spaces admitting a unique fractal structure, Fund. Math. 141 (1992), 257-268. | Zbl 0832.28011

[00003] [4] D. P. Bellamy, Homeomorphisms of composants, Houston J. Math. 5 (1979), 313-318. | Zbl 0457.54031

[00004] [5] W. Dębski and E. D. Tymchatyn, Homeomorphisms of composants in Knaster continua, Topology Proc. 12 (1987), 239-256. | Zbl 0674.54023

[00005] [6] K. Falconer, Fractal Geometry, Wiley, New York, 1990.

[00006] [7] R. J. Fokkink, The structure of trajectories, Dissertation, Delft, 1991. | Zbl 0768.54028

[00007] [8] S. E. Holte, Generalized horseshoe maps and inverse limits, Pacific J. Math. 156 (1992), 297-306. | Zbl 0723.58034

[00008] [9] Z. Janiszewski, Oeuvres Choisies, PWN, Warszawa, 1962.

[00009] [10] K. Kuratowski, Théorie des continues irréductibles entre deux points I, Fund. Math. 3 (1922), 200-231. | Zbl 48.0211.01

[00010] [11] K. Kuratowski, Topology, Vol. II, PWN, Warszawa, and Academic Press, New York, 1968.

[00011] [12] M. Misiurewicz, Embedding inverse limits of interval maps as attractors, Fund. Math. 125 (1985), 23-40. | Zbl 0587.58032

[00012] [13] S. B. Nadler, Continuum Theory, Marcel Dekker, New York, 1992.

[00013] [14] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817. | Zbl 0202.55202

[00014] [15] W. Szczechla, Inverse limits of certain interval mappings as attractors in two dimensions, Fund. Math. 133 (1989), 1-23. | Zbl 0708.58012

[00015] [16] W. T. Watkins, Homeomorphic classification of certain inverse limit spaces with open bonding maps, Pacific J. Math. 103 (1982), 589-601. | Zbl 0451.54027