On generalized Peano and Peano derivatives
Fejzić, H.
Fundamenta Mathematicae, Tome 142 (1993), p. 55-74 / Harvested from The Polish Digital Mathematics Library

A function F is said to have a generalized Peano derivative at x if F is continuous in a neighborhood of x and if there exists a positive integer q such that a qth primitive of F in the neighborhood has the (q+n)th Peano derivative at x; in this case the latter is called the generalized nth Peano derivative of F at x and denoted by F[n](x). We show that generalized Peano derivatives belong to the class [Δ’]. Also we show that they are path derivatives with a nonporous system of paths satisfying the I.I.C. condition as defined in [3]. This gives a new approach to studying generalized Peano and Peano derivatives since all their known properties can be obtained from the corresponding properties of path derivatives. Moreover, generalized Peano derivatives are selective derivatives.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:211992
@article{bwmeta1.element.bwnjournal-article-fmv143i1p55bwm,
     author = {H. Fejzi\'c},
     title = {On generalized Peano and Peano derivatives},
     journal = {Fundamenta Mathematicae},
     volume = {142},
     year = {1993},
     pages = {55-74},
     zbl = {0797.26004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv143i1p55bwm}
}
Fejzić, H. On generalized Peano and Peano derivatives. Fundamenta Mathematicae, Tome 142 (1993) pp. 55-74. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv143i1p55bwm/

[00000] [1] S. Agronsky, R. Biskner, A. Bruckner and J. Mařík, Representations of functions by derivatives, Trans. Amer. Math. Soc. 263 (1981), 493-500. | Zbl 0455.26002

[00001] [2] A. M. Bruckner, Differentiation of Real Functions, Lecture Notes in Math. 659, Springer, Berlin 1978. | Zbl 0382.26002

[00002] [3] A.M. Bruckner, R.J. O'Malley and B.S. Thomson, Path derivatives: A unified view of certain generalized derivatives, Trans. Amer. Math. Soc. 283 (1984), 97-125. | Zbl 0541.26003

[00003] [4] M. E. Corominas, Contribution à la théorie de la dérivation d'ordre supérieur, Bull. Soc. Math. France 81 (1953), 176-222.

[00004] [5] A. Denjoy, Sur l'intégration des coefficients différentiels d'ordre supérieur, Fund. Math. 25 (1935), 273-326. | Zbl 61.1115.03

[00005] [6] H. Fejzić, Decomposition of Peano derivatives, Proc. Amer. Math. Soc., to appear. | Zbl 0797.26003

[00006] [7] M. Laczkovich, On the absolute Peano derivatives, Ann. Univ. Sci. Budapest. Eőtvős Sect. Math. 21 (1978), 83-97. | Zbl 0425.26005

[00007] [8] C. M. Lee, On absolute Peano derivatives, Real Anal. Exchange 8 (1982-1983), 228-243.

[00008] [9] C. M. Lee, On generalized Peano derivatives, Trans. Amer. Math. Soc. 275 (1983), 381-396. | Zbl 0506.26006

[00009] [10] H. Oliver, The exact Peano derivative, ibid. 76 (1954), 444-456. | Zbl 0055.28505

[00010] [11] R. J. O'Malley, Decomposition of approximate derivatives, Proc. Amer. Math. Soc. 69 (1978), 243-247.

[00011] [12] R. J. O'Malley and C. E. Weil, The oscillatory behavior of certain derivatives, Trans. Amer. Math. Soc. 234 (1977), 467-481. | Zbl 0372.26006

[00012] [13] J. Mařík, On generalized derivatives, Real Anal. Exchange 3 (1977-78), 87-92.

[00013] [14] J. Mařík, Derivatives and closed sets, Acta Math. Hungar. 43 (1-2) (1984), 25-29. | Zbl 0543.26003

[00014] [15] S. Verblunsky, On the Peano derivatives, Proc. London Math. Soc. (3) 22 (1971), 313-324. | Zbl 0209.36401

[00015] [16] C. Weil, On properties of derivatives, Trans. Amer. Math. Soc. 114 (1965), 363-376. | Zbl 0163.29604

[00016] [17] C. Weil, On approximate and Peano derivatives, Proc. Amer. Math. Soc. 20 (1969), 487-490. | Zbl 0176.01103

[00017] [18] C. Weil, A property for certain derivatives, Indiana Univ. Math. J. 23 (1973/74), 527-536. | Zbl 0273.26003

[00018] [19] A. Zygmund, Trigonometric Series, 2nd ed., Cambridge Univ. Press, 1959. | Zbl 0085.05601